
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)

sorry , ko để ý,
Ta có A =1.2 + 2.3 + 3.4 + ...+ 98.99
B = 1^2 + 2^2 + 3^2 +...+98^2 = 1.1+2.2+3.3+...+98.98
Suy ra: A-B= (1.2 + 2.3 + 3.4 + ...+ 98.99) - (1.1+2.2+3.3+...+98.98)
= (1.2-1.1) + (2.3-2.2) + (3.4-3.3) +...+ (98.99-98.98)
= 1(2-1) + 2(3-2) + 3(4-3) +...+ 98(99-98)
= 1.1 + 2.1 + 3.1 +...+ 98.1
= 1+ 2+ 3+...+ 98 = [98.(98+1)]/2= 98.99/2 = 4851
A = 1.2 + 2.3 + 3.4 + ... + 98.99
A x 3 =1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3
A x 3 = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2 )+...+98.99.(100-97)
A x 3 = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99
A x 3 = 98.99.100
=> A = 98.99.100:3
=> A = 323400

\(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2014}}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)
\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2014}}\right)\)
\(2A=\frac{1}{3}-\frac{1}{3^{2014}}\)
\(A=\frac{\frac{1}{3}-\frac{1}{3^{2014}}}{2}\)
A=-1,6:(1+2/3)
A=-1,6 : \(\frac{5}{3}\)
A=\(-1,6.\frac{3}{5}\)
A=-0,96