Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Vậy \(x=\frac{13}{10}\)
~~~~~Hok tốt ~~~~~
a,\(\frac{1313}{1212}\div x=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\frac{13}{12}\div x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}\div x=1-\frac{1}{6}\)
\(\frac{13}{12}\div x=\frac{5}{6}\)
\(x=\frac{13}{12}\div\frac{5}{6}\)
\(x=\frac{13}{12}\times\frac{6}{5}\)
\(x=\frac{13}{10}\)
Chúc bạn hok tốt !
A=1.2+2.3+3.4+4.5+5.6+...+2016.2017
=> 3A = 1.2.3+2.3.3+3.4.3+4.5.3+5.6.3+.......+2016.2017.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3) + .......+ 2016.2017.(2018-2015)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +..........+ 2016.2017.2018 - 2015.2016.2017
=> 3A = 2016.2017.2018
=> A = 2016.2017.2018 : 3
Ta thấy:Các số trong dãy số trên cách nhau 1,1 đơn vị.
Số các số hạng là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 1832,819727 ( số )
Tổng là:
( 2016,2017 + 1,2 ) x 1832,819727 : 2 = 1848766,817
Đ/S: số trên dài wóa :))
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Học tốt nha!
A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\)
A= 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2018}-\frac{1}{2019}\)
A= 1 - \(\frac{1}{2019}\)
A= \(\frac{2018}{2019}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
=\(\frac{1}{2}-\frac{1}{201}\)
=\(\frac{199}{402}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)
a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)
\(=\frac{201.204+1}{201.204+2.204-407}\)
\(=\frac{201.204+1}{201.204+1}\)
=1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
1/1-1/2+1.2-1/3+1/3-1/4+..+1/x-1/x+1=2018/2019
1-1/x+1=2018/2019
1-2018/2019=1/x+1
1/2019=1/x+1
=>x+1=2019
=>x=2018
vậy...
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\frac{1}{1}-\frac{2018}{2019}=\frac{1}{x+1}\)
\(\frac{1}{2019}=\frac{1}{x+1}\)
=> \(2019=x+1\)
\(x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Hok tốt