Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
đăng từng câu nhé bạn
chứ kiểu vậy thì ko có ai giải cho bạn đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
a) \(A=\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(2A=\dfrac{2}{4^2}+\dfrac{2}{6^2}+...+\dfrac{2}{100^2}\)
\(< \dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Suy ra \(A< \dfrac{1}{4}\)
Do đó \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2}+\dfrac{1}{4}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\).
b) \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+..+\dfrac{2499}{2500}\)
\(=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)
\(=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(=49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)
c) \(\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\dfrac{1+5\left(1+5+...+5^8\right)}{1+5+5^2+...+5^8}>5\)
\(\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}=\dfrac{1+3\left(1+3+...+3^8\right)}{1+3+3^2+...+3^8}=\dfrac{1}{1+3+3^2+...+3^8}+3< 4\)
Do đó ta có đpcm.