K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

\(A=1+2019+2019^2+...+2019^{50}\\ 2019A=2019+2019^2+2019^3+...+2019^{51}\\ 2019A-A=2019^{51}-1\\ \Rightarrow A=\frac{2019^{51}-1}{2018}\)

23 tháng 12 2019

Nhanh thật =))

17 tháng 5 2018

So sánh :

A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)và B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)

Ta có : 

+ , A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)

2018A =  \(\frac{2018\left(2018^{2019}+1\right)}{2018^{2020}+1}\)

2018A = \(\frac{2018^{2020}+2018}{2018^{2020}+1}\)

2018A = \(1\frac{2018}{2018^{2020}+1}\)

+ , B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)

2018B = \(\frac{2018\left(2018^{2018}+1\right)}{2018^{2019}+1}\)

2018B = \(\frac{2018^{2019}+2018}{2018^{2019}+1}\)

2018B = \(1\frac{2018}{2018^{2019}+1}\)

Ta thấy : 

20182019 + 1 < 20182020 + 1

= > \(\frac{2018}{2018^{2019}+1}\)\(\frac{2018}{2018^{2020}+1}\)

= > B > A 

Vậy B > A

22 tháng 8 2019

a) \(A=2+2^2+2^3+...+2^{2019}\)

\(\Rightarrow2A=2^2+2^3+...+2^{2020}\)

\(\Rightarrow2A-A=\left(2^2+...+2^{2020}\right)-\left(2+...+2^{2019}\right)\)

\(\Rightarrow A=2^{2020}-2\)

Ta có: \(A+2=2^{x+10}\)

\(\Leftrightarrow2^{2020}-2+2=2^{x+10}\)

\(\Leftrightarrow2^{2020}=2^{x+10}\)

\(\Leftrightarrow2020=x+10\)

\(\Leftrightarrow x=2010\)

b)  Ta có: \(A+2=2^{2020}=\left(2^{1010}\right)^2\)là số chính phương 

XÉT:\(A=2+2^2+2^3+...+2^{2019}\)

\(\Leftrightarrow2A=2^2+2^3+...+2^{2019}+2^{2020}\)

\(\Leftrightarrow2A-A=2^{2020}-2\)

\(\Leftrightarrow A=2^{2020}-2\)

\(\Rightarrow A+2=2^{2020}-2+2=2^{2020}\)LÀ SỐ CHÍNH PHƯƠNG

\(a+2=2^{x+10}\)

\(\Leftrightarrow2^{x+10}=2^{2020}\)

\(\Leftrightarrow x+10=2020\Leftrightarrow x=2010\)

21 tháng 4 2019

a) (x-3)100-1=0

\(\Leftrightarrow\left(x-3\right)^{100}=0+1=1\)

\(\Leftrightarrow\left(x-3\right)^{100}=1^{100}=\left(-1\right)^{100}\)

\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1+3=4\\x=\left(-1\right)+3=2\end{matrix}\right.\)

Vậy: x\(\in\left\{4;2\right\}\)

b) (9-5x)2019+1=0

\(\Leftrightarrow\left(9-5x\right)^{2019}=0-1=-1=\left(-1\right)^{2019}\)

\(\Rightarrow9-5x=-1\)

\(\Leftrightarrow5x=9-\left(-1\right)=10\)

\(\Leftrightarrow x=10:5=2\)

Vậy: x=2

5 tháng 10 2019

Ta có : 2019^10+2019^9=2019^9.(2019+1)=2019^9.2020

Mà 2020^10>2019^9.2020

=>2020^10>2019^10+2019^9

9 tháng 4 2019

\(A=\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2019^3}\)

\(\Rightarrow A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right)\)

\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\)

\(\Rightarrow A< \frac{1}{4}-\left(\frac{1}{2}\cdot\frac{1}{2019\cdot2020}\right)\)

\(\Rightarrow A< \frac{1}{4}\) ( ĐPCM )