Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
2.
Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên
\(\Rightarrow3⋮n+2\)
\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Lập bảng ta có :
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }
3.
\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)
\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )
\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )
Lấy ( 2 ) trừ ( 1 ) ta được :
\(2B=1-\frac{1}{3^{98}}< 1\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)
\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)
4.
đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(5A=1-\frac{1}{31}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)
Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)
\(A=2^{2017}-1\)
Tham khảo bài làm nhé bạn :
Câu hỏi của Nguyễn Thị Ngọc Anh - Toán lớp 6 - Học toán với OnlineMath
^^
\(H=\frac{1}{a^2}+\frac{2}{a^3}+\frac{3}{a^4}+...+\frac{n}{a^{n+1}}\)
\(H=\frac{a^{n-1}+2.a^{n-2}+...+\left(n-1\right).a+n}{a^{n+1}}\)
\(H=\frac{1}{a^{n+1}}.\left[\left(a^{n-2}+a^{n-2}+a+1\right)+\left(a^{n-2}+a^{n-3}+...+a+1\right)+...+\left(a+1\right)+1\right]\)
Đặt \(Sn=1+a+a^2+...+a^n\)=>\(a.Sn=a+a^2+a^3+...+a^n+a^{n+1}\)
=> \(a.Sn-Sn=a^{n+1}-1\)=>\(Sn.\left(a-1\right)=a^{n+1}-1\)=>\(Sn=\frac{a^{n+1}-1}{a-1}\)
Khi đó \(H=\frac{1}{a^{n+1}}.\left[\frac{a^n-1}{a-1}+\frac{a^{n-1}-1}{a-1}+...+\frac{a^2-1}{a-1}+\frac{a-1}{a-1}\right]\)
\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1-\left(n+1\right)}{a-1}\right]\)
\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1}{a-1}-\frac{n-1}{a-1}\right]\)
\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}-1}{\left(a-1\right)^2}-\frac{n-1}{a-1}\right]\)
\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}}{\left(a-1\right)^2}-\frac{1}{a-1}-\frac{n+1}{a-1}\right]\)
\(H=\frac{1}{\left(a-1\right)^2}-\frac{1}{a^{n+1}.\left(a-1\right)^2}-\frac{n+1}{a^{n+1}.\left(a-1\right)}< \frac{1}{\left(a-1\right)^2}\)(đpcm)
Xong rồi đó , phù.......
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm