Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999
A= 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + ...+ 1/99x101
Ax2= 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + ... + 2/99x101
Ax2= 5-3/3x5 + 7-5/5x7 + 9-7/7x9 + 11-9/9x11 + ... + 101-99/99x101
Ax2=5/3x5 - 3/3x5 + 7/5x7 - 5/5x7 + 9/7x9 -7/7x9 + ... + 101/99x101 -99/99x101
Ax2=1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101
Ax2= 1/3 - 1/101
Ax2 = 98/303
A= 98/303 : 2
A=49/303
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
=1/3*5+1/5*7+1/7*9+...+1/99*101
=1/3-1/5+1/5-1/7+...+1/99-1/101
=1/3-1/101
=98/303
1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 9999
= 1/3 + ( 1/5 + 1/35 + 1/63 ) + 1/99 = 9999
= 1/3 + 1111/9999 + 1/99
= 3333/9999 + 1111/9999 +101/9999
= 4545/9999
Ta có: A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101
=1/3-1/101
=98/303
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=>2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\)
A= 1/2(1/3 - 1/101)
A= 49/303
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}\)
\(=\frac{49}{303}\)
Dấu chấm(.) ở cấp hai là dấu nhân (x)
A=1/15+1/35+1/63+1/99+1/143+1/195+1/255+1/323
=> A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15 + 1/15.17 + 1/17.19
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/17 - 1/19
=> 2A = 1/3 - 1/19
=> 2A = 16/57 => A = 16/57 : 2 = 8/57
=>=> A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15 + 1/15.17 + 1/17.19
=>=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/17 - 1/19
=> 2A = 1/3 - 1/19
=> 2A = 16/57 => A = 16/57 : 2 = 8/57
A = 1/15 + 1/35 + 1/63 + 1/99 + ....... + 1/9999
A = 1/3 x 5 + 1/5 x 7 + 1/9 x7 + .........+ 1/99 x101
A = 1/2 x ( 1/3 -1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...... + 1/99 - 1/101
A = 1/2 x ( 1/3 - 1/99 )
A = 1/2 x 98/303
A = 49/303
A = 1/3.5 +1/5.7 + 1/7.9 + 1/9.11 + ... + 1/99. 101
= 1/2.(2/3.5+ 2/5.7 + 2/7.9 + ...+2/99.101)
= 1/2.(1/3 - 1/5 - 1/5 - 1/7 - 1/7 - 1/9 + .... +1/99 - 1/101
=1/2.(1/3 - 1/101)
=1/2 .98//303
=49/303
Dấu . là nhân đó nha bạn