Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101
ta biến đổi thành : 101 - 100 + 99 -...- 6 + 5 - 4 + 3 - 2 + 1
ta thấy có 101 số hạng ta nhóm 2 số 1 nhóm được 50 nhóm và thừa số 1
mà mỗi nhóm có giá trị bằng 1 => 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101 = 50 x 1 + 1 = 51
a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)
c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)
do đó : A . A < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)
1.
a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{6}{2}.\frac{10}{39}\)
\(=\frac{10}{13}\)
b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)
\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\frac{5}{28}\)
\(=\frac{15}{56}\)
\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số các số hạng của tổng \(S\)là :
\(\left(9-1\right)\div1+1=9\)( số hạng )
Tổng của dãy số \(S\)là :
\(\frac{\left(9+1\right).9}{2}=45\)
Đ/S: 45
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Số các số hạng của tổng \(M\)là :
\(\left(101-1\right)\div1+1=101\)
Tổng của dãy số \(M\)là :
\(\frac{\left(101+1\right).101}{2}=5151\)
Đ/S : 5151
Số số hạng của dãy trên là :
(9 - 1) : 1 + 1 = 9 (số)
Tổng là :
(9 + 1) x 9 : 2 = 45
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
1-2+3-4+5-6+...+99-100+101
= (1+3+5+...+101) - (2+4+6+...+100)
từ 1 đến 101 co : (101-1):2+1=51
1+..+101 = (1+101)x 51:2= 2601
từ 2 đến 100 co : (100-2);2+1=50
2+...+100 = (100 +2) x 50:2=2550
=> A= 2601-2550=51
bạn tích cho mk nha,mk nhanh nhất đó bn!
A=1-2+3-4+5-6+...+99-100+101
A= (1+3+5+...+101) - (2+4+6+...+100)
tu 1 den 101 co : (101-1):2+1=51
1+..+101 = (1+101)x 51:2= 2601
tu 2 den 100 co : (100-2);2+1=50
2+...+100 = (100 +2) x 50:2=2550
=> A= 2601-2550=51