Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1^n =1^n ; 2^n>1^n ; 3^n>1^n;.......;50^n>1^n
nên 1^n+2^n+3^n+4^n+5^n+....50^n> 51*1^n=51^n
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25
A=1+2+22+......+2100
=>2A=2+2223+......+2100+2101
=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)
=>A=2101-1
B=3+32+...+350
2B=32+33+..+351
2B-B=(32+33+......+351)-(3+32+...+350)
B=351-3
Ta có 7a2 - 9b2 + 29 = 0
=> 9a2 - 9b2 + 27 = 2a2 - 2 => ( 2a2 - 2 ) chia hết cho 9
=> 2( a2 - 1 ) chia hết cho 9 => a2 - 1 chia hết cho 9 => a2 chia 9 dư 1
Mà a nhỏ nhất => a2 = 1
=> a = 1 => 7 - 9b2 + 29 = 0 => 9b2 = 36
=> b2 = 4 => b = 2
Do đó 11c2 = 9 . 22 - 25 = 11 => c2 = 1 => c = 1
Thử lại a = 1 ; b = 2 ; c = 1 thỏa mãn
Vậy a = 1 , b = 2 ; c = 1
1/
Với $n$ nguyên để $\frac{n^2+2n-6}{n-2}$ là số nguyên thì:
$n^2+2n-6\vdots n-2$
$\Rightarrow n(n-2)+4(n-2)+2\vdots n-2$
$\Rightarrow 2\vdots n-2$
$\Rightarrow n-2\in \left\{\pm 1; \pm 2\right\}$
$\Rightarrow n\in \left\{3; 1; 4; 0\right\}$
Bạn xem lại đề câu 2. Với điều kiện đề cho thì không phù hợp với lớp 6 bạn nhé.
\(2A=\left(1+2+2^2+...+2^{50}\right).2\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=\left(2+2^2+2^3+...+2^{51}\right)\)\(-\left(1+2+2^2+...+2^{50}\right)\)
\(A=2^{51}-1\)
Theo bài \(A+1=2^n\)
mà \(A=2^{51}-1\)
\(\Rightarrow A+1=2^{51}-1+1\)
Vậy \(A+1=2^{51}\)
\(\Leftrightarrow n=51\)