Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 + 1/4 + 1/8 + 1/16
= 16/16 + 4/16 + 2/16 + 1/16
= 23/16
b) 2 - 1/8 - 1/12 - 1/16
= 96/48 - 6/46 - 4/48 - 3/48
= 83/48
c) 4/99 × 18/5 : 12/11 + 3/5
= 8/55 : 12/11 + 3/5
= 2/15 + 3/5
= 2/15 + 9/15
= 11/15
d) (1 - 3/4) × (1 + 1/3) : (1 - 1/3)
= 1/4 × 4/3 : 2/3
= 1/3 : 2/3
= 2
A = 2/3 . 3/4 . 4/5 ..... 98/99
A = 2 . 3 . 4 ....... 98/3 . 4 . 5 ...... 99
A = 2/99
\(\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{2}{3^{\left(1\right)}}\cdot\frac{3^{\left(1\right)}}{4^{\left(1\right)}}\cdot\frac{4^{\left(1\right)}}{5^{\left(1\right)}}\cdot...\cdot\frac{98^{\left(1\right)}}{99}\)
\(=\frac{2}{99}\)
Bài 1:
\(A=\frac{1}{\left(1+2\right)}+\frac{1}{\left(1+2+3\right)}+\frac{1}{\left(1+2+3+4\right)}\)\(+\frac{1}{\left(1+2+3+4+5\right)}+...+\)\(\frac{1}{\left(1+2+3+...+10\right)}\)
\(A=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=\frac{9}{11}\)
Bài 2 :
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17 lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
\(\Rightarrow A< \frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}\)
\(=\frac{11}{17}\)
\(=\frac{1111}{1717}=B\)
Vậy \(A=B\)
\(A=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\)
\(A=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)
\(A=\frac{2}{99}\)