Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(A\le0,5\)
Dấu "=" xảy ra khi x-3,5 = 0
<=> x = 3,5
Vậy max A = 0,5 khi x = 3,5
\(B\le-2\)
Dấu "=" xảy ra khi 1,4 -x =0
<=> x = 1,4
Vậy max B = -2 khi x =1,4
1.
A nhỏ hơn hoặc bằng 0,5 suy ra GTLN của A là 0,5.
B sẽ nhơ hơn hoặc bằng 2 suy ra GTLN
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,A=0,5-\left|x-3,5\right|\)
Có \(\left|x-3,5\right|\ge0\)
\(\Rightarrow A\le0,5+0=0,5\)
Dấu "=" xảy ra khi \(\left|x-3,5\right|=0\Leftrightarrow x=3,5\)
Vậy \(A_{max}=0,5\Leftrightarrow x=3,5\)
\(B=-\left|1,4-x\right|-2\)
Có \(-\left|1,4-x\right|\le0\)
\(\Rightarrow B\le0-2=-2\)
Dấu "=" xảy ra khi \(1,4-x=0\Leftrightarrow x=1,4\)
Vậy \(B_{max}=-2\Leftrightarrow x=1,4\)
\(2,C=1,7+\left|3,4-x\right|\)
Có \(\left|3,4-x\right|\ge0\)
\(\Rightarrow C\ge1,7+0=1,7\)
Dấu "=" xảy ra khi \(3,4-x=0\Leftrightarrow x=3,4\)
Vậy \(C_{min}=1,7\Leftrightarrow x=3,4\)
\(D=\left|x+2,8\right|-3,5\)
Có \(\left|x+2,8\right|\ge0\)
\(\Rightarrow D\ge0-3,5=-3,5\)
Dấu "=" xảy ra khi \(x+2,8=0\Leftrightarrow x=-2,8\)
Vậy \(D_{min}=-3,5\Leftrightarrow x=-2,8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có |x-3,5|>=0 với mọi x
=> 0,5-|x-3,5|<=0.5
dấu = xảy ra <=> x=3.5
b) ta có 1.4-x>=0 với mọi x
=> -|1.4-x|-2<= -2
dấu = xảy ra <=> x=1.4
\(A=0,5-\left|x-3,5\right|\)
Vì \(\left|x-3,5\right|\)luôn lớn hơn hoặc bằng 0 với mọi x
=>\(-\left|x-3,5\right|\)luôn nhỏ hơn hoặc bằng 0 với mọi x
=>\(0,5-\left|x-3,5\right|\)luôn nhỏ hơn hoặc bằng 0,5 với mọi x
Vậy GTLN của biểu thức A là 0,5
Dấu "=" xảy ra khi \(\left|x-3,5\right|=0\)
=>\(x-3,5=0\)
\(x=3,5\)
Vậy biểu thức A đạt giá trị lớn nhất là 0,5 khi x=3,5
\(B=-\left|1,4-x\right|-2\)
Vì \(\left|1,4-x\right|\)luôn lớn hơn hoặc bằng 0 với mọi x
=>\(-\left|1,4-x\right|\)luôn nhỏ hơn hoặc bằng 0 với mọi x
=>\(-\left|1,4-x\right|-2\)luôn nhỏ hơn hoặc bằng -2 với mọi x
Vậy biểu thức A đạt GTLN là -2
Dấu "=" xảy ra khi \(\left|1,4-x\right|=0\)
=>\(1,4-x=0\)
\(x=1,4\)
Vậy biểu thức A đạt giá trị lơn nhất là -2 khi x=1,4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=0,5-\left|x-3,5\right|\le0,5\\ A_{max}=0,5\Leftrightarrow x-3,5=0\Leftrightarrow x=3,5\\ B=-\left|1,4-x\right|2=-2\left|1,4-x\right|\le0\\ B_{min}=0\Leftrightarrow1,4-x=0\Leftrightarrow x=1,4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: 6B=2*4*6+4*6*6+6*8*6+...+46*48*6+48*50*6
=2*4*6-2*4*6+4*6*8-4*6*8+...-44*46*48+46*48*50-46*48*50+48*50*52
=48*50*52
=>B=20800
d: 9D=1*4*9+4*7*9+...+46*49*9
=1*4*2+1*4*7-1*4*7+1*7*10-1*7*10+...+46*49*52-46*49*43
=1*2*4+46*49*52
=117216
=>D=13024
a:
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có: \(\left|x-3,6\right|\ge0\)
để A = 0,6 - | x-3,6| có giá trị lớn nhất
=> | x -3,6| đạt giá trị nhỏ nhất
Dấu "=" xảy ra khi
|x-3,6| = 0
=> x - 3,6 = 0
x = 3,6
=> giá trị lớn nhất của A = 0,6 - | 3,6-3,6| = 0,6 tại x = 3,6
phần b lm tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
|x-1.5|+|2.5-x|=0
=> \(\hept{\begin{cases}x-1,5=0&2,5-x=0&\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}\)
a: \(A=-\left|x-3,5\right|+0,5\le0,5\)
Dấu '=' xảy ra khi x=3,5
b: \(B=-\left|x-1,4\right|-2\le-2\)
Dấu '=' xảy ra khi x=1,4