Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2+28x+49=\left(2x\right)^2+2.2x.7+7^2=\left(2x+7\right)^2\\ b,16y^2-8y+1=\left(4y\right)^2-2.4y.1+1^2=\left(4y-1\right)^2=\left(1-4y\right)^2\\ 4a^2+20ab+25b^2=\left(2a\right)^2+2.2a.5b+\left(5b\right)^2=\left(2a+5b\right)^2\\ d,9x^2-6xy+y^2=\left(3x\right)^2-2.3x.y+y^2=\left(3x-y\right)^2=\left(y-3x\right)^2\)
a, \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b, \(4m^2-16n^2=\left(2m-4n\right)\left(2m+4n\right)=4\left(m-2n\right)\left(m+2n\right)\)
c, \(49-16x^2=\left(7-4x\right)\left(7+4x\right)\)
d, \(25-9y^2=\left(5-3y\right)\left(5+3y\right)\)
e, \(81x^2-16y^2=\left(9x-4y\right)\left(9x+4y\right)\)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
D = ( 15 x y 2 + 18 x y 3 + 16 y 2 ) : 6 y 2 – 7 x 4 y 3 : x 4 y ⇔ D = 15 x y 2 : ( 6 y 2 ) + 18 x y 3 : ( 6 y 2 ) + 16 y 2 : ( 6 y 2 ) – 7 x 4 y 3 : x 4 y ⇔ D = 5 2 x + 3 x y + 8 3 - 7 y 2
Tại x = 2 3 và y = 1 ta có
D = 5 2 . 2 3 + 3 . 2 3 . 1 + 8 3 - 7 . 1 2 = 5 3 + 2 + 8 3 - 7 = 13 3 - 5 = - 2 3
Đáp án cần chọn là: D
Ta có:
\(P=\dfrac{5x-4y}{5x+4y}\)
\(\Leftrightarrow P^2=\left(\dfrac{5x-4y}{5x+4y}\right)^2\)
\(\Leftrightarrow P^2=\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(5x\right)^2-2\cdot5x\cdot4y+\left(4y\right)^2}{\left(5x\right)^2+2\cdot5x\cdot4y+\left(4y\right)^2}\)
\(\Leftrightarrow P^2=\dfrac{\left(25x^2+16y^2\right)-40xy}{\left(25x^2+16y^2\right)+40xy}\)
Thay \(25x^2+16y^2=50xy\) vào ta có:
\(P^2=\dfrac{50xy-40xy}{50xy+40xy}=\dfrac{10xy}{90xy}=\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2\)
Mà: \(4y< 5x< 0\)
Nên: \(P=\dfrac{5x-4y}{5x+4y}< 0\)
Vậy: \(P=-\dfrac{1}{3}\)
25x^2+16y^2=50xy
=>25x^2-50xy+16y^2=0
=>25x^2-10xy-40xy+16y^2=0
=>5x(5x-2y)-8y(5x-2y)=0
=>(5x-2y)(5x-8y)=0
=>5x=2y hoặc 5x=8y
5x>4y
=>5x=8y
=>x/8=y/5=k
=>x=8k; y=5k
\(P=\dfrac{5\cdot8k-4\cdot5k}{5\cdot8k+4\cdot5k}=\dfrac{40-20}{40+20}=\dfrac{1}{3}\)
a) \(a^2b-4ab^2\)
\(=ab\left(a-4b\right)\)
b) \(x^8+4y^4\)
\(=\left(x^4\right)^2+\left(2y^2\right)^2\)
\(=\left(x^4-2y^2\right)\left(x^4+2y^2\right)\)
c) \(x^2-10x-16y^2+25\)
\(=\left(x^2-10x+25\right)-16y^2\)
\(=\left(x-5\right)^2-\left(4y\right)^2\)
\(=\left[\left(x-5\right)+4y\right]\left[\left(x-5\right)-4y\right]\)
\(=\left(x-5+4y\right)\left(x-5-4y\right)\)
\(-4x^2-24xy-36y^2\)
\(=-\left(4x^2+24xy+36y^2\right)\)
\(=-\left[\left(2x\right)^2+24xy+\left(6y\right)^2\right]\)
\(=-\left[\left(2x\right)^2+2\cdot2x\cdot6y+\left(6y\right)^2\right]\)
\(=-\left(2x+6y\right)^2\)
\(=-\left[2\left(x+3y\right)\right]^2\)
\(=-4\left(x+3y\right)^2\)
tham khảo
A=x2+2x+5+x2−4x+4x2+2x+5=1+x2−4x+4x2+2x+5=1+(x−2)2(x+1)2+4≥1A=x2+2x+5+x2−4x+4x2+2x+5=1+x2−4x+4x2+2x+5=1+(x−2)2(x+1)2+4≥1
Dấu "=" xảy ra khi x=2
A=\(\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x(2x-5y)}{ 8x(x-3y)} =\frac{2x-5y}{x-3y} \)
\(\frac{x}{y}=\frac{10}{3}<=>10y=3x <=>y=\frac{3}{10}x \)
=>A=(\(2x-\frac{3}{2}x):(x-\frac{9}{10}x) \)
=\(\frac{1}{2}x:\frac{1}{10}x=\frac{1}{2}x.\frac{10}{x}=5 \)
(3x-4y)2
\(\left(3x-4y\right)^2\)