K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(=a\left(9a^2-12a+4\right)=a\left(3a-2\right)^2\)

25 tháng 10 2021

\(9a^3-12a^2+4a=a\left(9a^2-12a+4\right)=a\left(3a-2\right)^2\)

\(9a^4+12a^2+4=\left(3a^2+2\right)^2\)

28 tháng 9 2017

Giải:

\(9a^4+12a^2+4\)

\(=\left(3a^2\right)^2+2.3a^2.2+2^2\)

\(=\left(3a^2+2\right)^2\)

Vậy giá trị của biểu thứ trên khi phân tích đa thức thành nhân tử là \(\left(3a^2+2\right)^2\).

Chúc bạn học tốt!

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

  • Nguyễn Thị Linh

bạn mới là người phải nhận:nội quy

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

sorry mk không biết giải nha 

học tốt

&YOUTUBER&

15 tháng 7 2016

1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)

2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)

3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3

19 tháng 9 2018

\(A=12a-4a^2+3\)

\(A=-\left(4a^2-12a-3\right)\)

\(A=-\left[\left(2a\right)^2-2.2a.3+9-9-3\right]\)

\(A=-\left(2a-3\right)^2+12\)

\(-\left(2a-3\right)^2\le0\) với mọi a

\(\Rightarrow-\left(2a-3\right)^2+12\le12\) với mọi a

\(\Rightarrow Amax=12\Leftrightarrow a=\dfrac{3}{2}\)

19 tháng 9 2018

Bạn ơi bài này tìm min nhé

21 tháng 3 2021

$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$

$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$

$=(2a+b-3)^2+3.(b-1)^2$

Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$

Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$

Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$

Vậy $MinP=0$ tại $a=b=1$

24 tháng 2 2018

Rút gọn biểu thức B=\(\dfrac{4a^2+12a+9}{2a^2-a-6}=\dfrac{\left(2a+3\right)^2}{2a^2-4a+3a-6}=\dfrac{\left(2a+3\right)^2}{2a\left(a-2\right)+3\left(a-2\right)}=\dfrac{\left(2a+3\right)^2}{\left(a-2\right)\left(2a+3\right)}=\dfrac{2a+3}{a-2}\)

24 tháng 2 2018

B\(=\dfrac{4a^2+12a+9}{2a^2-a-6}\)

⇒B\(=\dfrac{\left(2a+3\right)^2}{2a^2-4a+3a-6}\)

⇒B\(=\dfrac{\left(2a+3\right)^2}{2a\left(a-2\right)+3\left(a-2\right)}\)

⇒B\(=\dfrac{\left(2a+3\right)^2}{\left(a-2\right)\left(2a+3\right)}\)

⇒B\(=\dfrac{2a+3}{a-2}\)