Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+1+1+1+1+1+1+1+1+1=10
1+1+1+1+1+1+1+1+1-1=9
1+1+1+1+1+1+1+1-1-1=8
1+1+1+1+1+1+1-1-1-1=7
1+1+1+1+1+1-1-1-1-1=6
1+1+1+1+1-1-1-1-1-1=5
1+1+1+1-1-1-1-1-1-1=4
1+1+1-1-1-1-1-1-1-1=3
1+1-1-1-1-1-1-1-1-1=2
1-1-1-1-1-1-1-1-1-1-1=0
Nối cung ta điền dấu cộng hết
Các số còn lại ta giảm mỗi số một dấu cộng = dấu -
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(< =>\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(< =>\frac{128+64+32+16+8+4+2+1}{256}\)
\(< =>\frac{255}{256}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(< =>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< =>\frac{1}{1}-\frac{1}{100}\)
\(< =>\frac{99}{100}\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(< =>\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(< =>\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)
\(< =>\frac{1}{100}\)
mk chuc ban hoc tot nhe :))
1+1+11+11+1+1+1+1+1+1+1+1+1+111+1+1+1+1+1+1+1+1+1+1111+1+1+1+11+1+1+1+1+1+1+1+1+1+1=1288
\(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+...+\frac{1}{61.67}\)
=6.\(\left(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{61.67}\right)\):6
=\((\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{61.67}):6\)
=\(\left(1-\frac{1}{7}+\frac{1}{7}+\frac{1}{13}+...+\frac{1}{61}+\frac{1}{67}\right):6\)
=\(\left(1-\frac{1}{67}\right):6\)
=\(\frac{66}{67}:6=\frac{66}{67}.\frac{1}{6}=\frac{11}{67}\)
Ta có: 1/3 ; 1/15 ; 1/35;...
<=> 1/1.3 ; 1/3.5 ; 1/5.7
=> chữ số thứ 100 là: 1/199.201
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{199}-\frac{1}{201}\)
\(=1-\frac{1}{201}=\frac{200}{201}\)
Ta có chữ số thứ 100 của dãy ( 1/2.4 ; 1/4.6 ; 1/6.8;... ) là: 1/200.202
Ta có: \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{200.202}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{200}-\frac{1}{202}\)
\(=\frac{1}{2}-\frac{1}{202}\)
\(=\frac{50}{101}\)
\(a;\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)
a) \(\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)(cái này là 1 tính chất nha bn ! tìm hiểu thêm nhé )
c)đặt C= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
=> 2C = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
=> C=5/39
d) Ý d) lm tương tự ý c nha
e) đặt E =\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
=> 2E=\(1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
lấy 2E-E =\(1+\frac{1}{2}+...+\frac{1}{2^{99}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{100}}=1-\frac{1}{2^{100}}\)
=.> E=1 - \(\frac{1}{2^{100}}\)
Ta có : \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=2-\frac{1}{2^{99}}\)
\(\Leftrightarrow A=2-\frac{1}{2^{99}}\)
B tương tự
1*10^33
ui.yuoc.k7.tcykỳ,.f.uyo.tyuù.