Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR: a^2 + b^2 + c^2 + d^2 + e^2 \(\ge\) a (b +c +d +e) với mọi a, b, c, d, e thuộc R?
Help!!!!!!!!!
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
Phân dạng bài tập:
Câu 1: Có ít nhất 1 động vật không di chuyển
Câu 2: C
Câu 3: \(\exists x\in\mathbb{R}; x^2-x+7\geq 0\)
Bài tập rèn luyện
Câu 1: Hôm nay trời lạnh quá
Câu 2: 3
Câu 3: \(\exists n\in\mathbb{N}, n+11+6\vdots 11\)
Câu 4: C
Câu 5: A
Câu 6: C
1<=|2x-1|<=3
\(\Leftrightarrow\left[{}\begin{matrix}1< =2x-1< =3\\-1>=2x-1>=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2< =2x< =4\\0>=2x>=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1< =x< =2\\-1< =x< =0\end{matrix}\right.\)
\(E=\left[1;2\right]\cup\left[-1;0\right]\)
Để F giao E khác rỗng thì \(\left[{}\begin{matrix}a>=-1\\a+2< =2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>=-1\\a< =0\end{matrix}\right.\)
Tờ 1
Câu 1: A
Câu 2: B
Câu 3: C
Câu 4: B
Câu 1 dạng 2: D
Tờ 2:
Câu 2: 14 không phải số nguyên tố
Câu 3: D
Câu 1: A
Câu 2: B
Câu 3: B
a/ Đúng, khi \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b/ Sai, ví dụ \(x=0\) thì \(2x^2-3x-5\ne0\)
c/ Sai, khi \(x=-1\)
d/ Sai, \(3x^2+2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\) mà \(\left\{-1;-\frac{1}{3}\right\}\notin N\)
e/ Đúng, nhìn câu trên ta thấy pt có 2 nghiệm hữu tỉ
f/ Đúng, vì \(x^2+2x+5=\left(x+1\right)^2+4>0\) \(\forall x\in R\)