K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Đề hai có nhân 9 nha bạn làm mình hoang mang cái đề quá

\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\\\Leftrightarrow \left[3\left(2x+1\right)\right]^2-\left[2\left(x+1\right)\right]^2=0\\ \Leftrightarrow\left[3\left(2x+1\right)-2\left(x+1\right)\right]\left[3\left(2x+1\right)+2\left(x+1\right)\right]=0\\\Leftrightarrow \left[6x+3-2x-2\right]\left[6x+3+2x+2\right]=0\\\Leftrightarrow \left(4x+1\right)\left(8x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{8}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-\frac{1}{4};-\frac{5}{8}\right\}\)

\(\left(2x+1\right)^2-4.\left(x+1\right)^2=0\\ \Leftrightarrow4x^2+4x+1-4.\left(x^2+2x+1\right)=0\\ \Leftrightarrow4x^2+4x+1-4x^2-8x-4=0\\ \Leftrightarrow-4x=3\\ \Leftrightarrow x=-\frac{3}{4}\)

11 tháng 2 2020

Ta có : \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+10x-6x-12=0\)

\(\Leftrightarrow x^3\left(x+2\right)+5x\left(x+2\right)-6\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-1=0\)

hoặc   \(x^2+x+6=0\)

\(\Leftrightarrow\) \(x=-2\)(tm)

hoặc    \(x=1\)(tm)

hoặc   \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;1\right\}\)

20 tháng 2 2018

CHẳng hỉu j

10 tháng 2 2020

\(\left(x+1\right)^2+2\left(x+1\right)+1=0\)

đề là như này hả cậu?

10 tháng 2 2020

Ta có:

(x + 1)2 + 2(x + 1) + 1 = 0 ⇔ x2 + 2x + 1 + 2x + 2 + 1 = 0 ⇔ x2 + 4x + 4 = 0 ⇔ (x + 2)2 = 0 ⇔ x + 2 = 0 ⇔ x = -2

Vậy phương trình trên có nghiệm là x = -2

19 tháng 7 2018

undefined

4 tháng 8 2017

Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.

Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).

29 tháng 11 2021

\(\dfrac{x+10}{x-2}+\dfrac{x-18}{x+2}+\dfrac{x+2}{x^2-4}=\dfrac{\left(x+10\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-18\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+12x+20+x^2-16x-36+x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2-3x-14}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x^2+4x\right)-\left(7x+14\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x\left(x+2\right)-7\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-7}{x-2}\)