K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017
a) Thôi dễ rồi

b) \(\left(3x-2\right)^5=-243\)

\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)

c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)

Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)

18 tháng 5 2016

ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)  

Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0

=> (2x-5)2000+(3y+4)2002=0

=>2x-5=0 => x=2,5

=>3y+4=0=>y=\(\frac{-4}{3}\)

    

18 tháng 5 2016

Vì (2x-5)2000 > 0 với mọi x

(3y+4)2002 > 0 với mọi y

=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y

Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)

=>(2x-5)2000+(3y+4)2002=0

=>(2x-5)2000=(3y+4)2002=0

+)(2x-5)2000=0=>2x-5=0=>x=5/2

+)(3y+4)2002=0=>3y+4=0=>y=-4/3

Vậy x=5/2;y=-4/3

18 tháng 8 2018

a)4x-1+5.4x-2=576

=> 4x-1(1+5.\(4^{-1}\))=576

=> 4x-1.\(\dfrac{9}{4}\)=576

=> 4x-1=256=44

=> x-1=4

=> x=5

b) (2x-1)6=(2x-1)8

=> (2x-1)6 - (2x-1)8=0

=> (2x-1)6(1- (2x-1)2)=0

=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)

Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)

18 tháng 8 2018

c) (2x-5)2000+(3y+4)2002 \(\le0\)

Có (2x-5)2000\(\ge\)0 với mọi x

(3y+4)2002\(\ge\)0 với mọi y

=> (2x-5)2000+(3y+4)2002 \(\ge\) 0

=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0

=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)

Bài 2:

Có A=2100-299+298-...+22-2

=> 2A=2(2100-299+298-...+22-2)

=> 2A= 2101-2100+299-...+23-22

=> 2A= 2101-2100+299-...+23-22

+A= 2100-299+298-...+22-2

=> 3A= 2101-2

=> A=\(\dfrac{2^{101}-2}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

a)

\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)

b)

\(\frac{1}{4}-(2x-1)^2=0\)

\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)

\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)

c)

\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)

\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)

\(\Leftrightarrow 5-x=\frac{-3}{4}\)

\(\Leftrightarrow x=\frac{23}{4}\)

d)

\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)

\(\Rightarrow x=3,8:2=1,9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

e)

\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)

\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)

f)

\(5^{(x+5)(x^2-4)}=1\)

\(\Leftrightarrow (x+5)(x^2-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)

g)

\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)

\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)

h)

\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)

\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)

2 tháng 10 2019

a

(4x+7)2 = 25/36

(4x+7)2 = (5/6)2

==> 4x+7=5/6

4x=5/6-7=-37/6

x=-37/6:4=-37/24

b

(5+2x)3 = 8

(5+2x)3 = 23

==> 5+2x=2

2x=2-5=-3

x=-3:2=-1,5

c

3x.9=243

3x.32=35

3x=35:32

3x=33

3x=27 ==> x=27:3=9

d

42x = (-64).(-4)

42x = 43.41 = 44

==> 2x = 4

x = 4:2=2

Tick giúp mình nhe ahihi ^_^

20 tháng 11 2019

a

\(\Rightarrow\)\(2^x=16\)

\(\Rightarrow\) \(2^4\)

20 tháng 11 2019

b) \(3^{x+1}=9^x=3^{2x}\)

\(\Rightarrow x+1=2x\Leftrightarrow x=1\)

c) \(2^{3x+2}=4^x+5\Leftrightarrow4^{2x+1}=4^{x+5}\)

\(\Rightarrow2x+1=x+5\)\(\Rightarrow x=4\)

d) \(3^{2x-1}=243=3^5\)

\(\Rightarrow2x-1=5\Rightarrow x=3\)

19 tháng 3 2020

Bang Xz jskksjjmdkjehjiffd

19 tháng 7 2017

\(5^{x+2}+5^{x+3}=750\)

\(5^x.5^2+5^x.5^3=750\)

\(5^x.25+5^x\cdot125=750\)

\(5^x.\left(25+125\right)=750\)

\(5^x.150=750\)

\(5^x=750:150\)

\(5^x=5\)

\(5^x=5^1\)

\(\Rightarrow x=1\)

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)