Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -1 vào ta được:
\(\left[2.\left(-1\right)-3\right]^3=\left(-2-3\right)^3=\left(-5\right)^3=-125\)
\(8x^3-36x^2+54x-27\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3\)
\(=\left(2x-3\right)^3\)
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{4}\right)^2\)
\(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(-x^3+3x^2-3x+1=\left(-x+1\right)^3\)
a, \(\dfrac{27}{8x^3-1}:\dfrac{3}{2x-1}\)
\(=\dfrac{27}{\left(2x-1\right)\left(4x^2+2x+1\right)}.\dfrac{2x-1}{3}\)
\(=\dfrac{9}{4x^2+2x+1}\)
b, \(\dfrac{8x^3+36x^2+54x+27}{2x+3}=\dfrac{\left(2x+3\right)^3}{2x+3}=\left(2x+3\right)^2\)
a) Sửa đề: \(8x^3+36x^2+54x+27\)
Ta có: \(8x^3+36x^2+54x+27\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=\left(2x+3\right)^3\)
b) Ta có: \(x^2+4x+4\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=\left(x+2\right)^2\)
Tại x = 103/2 ta có :
\(M=5.\left(\dfrac{103}{2}\right)^3-36.\left(\dfrac{103}{2}\right)^2+54.\dfrac{103}{2}+27=590281,375\)
8x3+36x2+54x+27
tại x =-4
=>8×(-4)3+36×(-4)2+54×(-4)+27
=8×(-64)+36×16+54×(-4)+27
=-512+576-216+27
=-125
(4x-3)(16x2+12x+9)-x2(64x-4)
=4x(16x2+12x+9)- 3(16x2+12x+9)-x2(64x-4)
=(64x3+48x2+36x)-(48x2+36x+27)-(64x3-4x2)
=64x3+48x2+36x-48x2-36x-27-64x3+4x2
=(64x3-64x3)+(48x2-48x2+4x2)+(36x-36x)-27
=4x2-27
tại x=-1/4
=> 4×(-1/4)2-27
=4×1/16-27
=1/4-27
=-107/4
(ko bt cs đúng ko nx )
Bài 1:
a: \(C=\left(x-3\right)\left(x+3\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^2-9-\left(x^2+4x-5\right)\)
\(=x^2-9-x^2-4x+5=-4x-4\)
b: \(D=\left(3x-2\right)^2+2\left(x+1\right)\left(3x-2\right)+\left(x+1\right)^2\)
\(=\left(3x-2+x+1\right)^2=\left(4x-1\right)^2=16x^2-8x+1\)
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)
\(8x^3-36x^2+54x-27\)tại x = -1
\(=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3\)
\(=\left(2x-3\right)^3\)
Thay x= -1, ta có:
\(\left(2.\left(-1\right)-3\right)^3\)
\(=-125\)
•๖ۣۜHọ¢ тốт•
8x3 - 36x2 + 54x - 27 = ( 2x - 3 )3
Với x = -1 => Giá trị của bthuc = ( -2 - 3 )3 = (-5)3 = -125