Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)
\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(\left(-3\right)\left(4x+5\right)=9\)
\(4x+5=\frac{9}{-3}\)
\(4x+5=-3\)
\(4x=-3-5\)
\(4x=-8\)
\(x=-\frac{8}{4}\)
\(x=-2\)
***
\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)
\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)
\(x^2-2x+1-x^2+5x=\frac{21}{3}\)
\(3x+1=7\)
\(3x=7-1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
***
\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)
\(x^2+6x+9-x^2-8x+4x+32=1\)
\(2x=1-9-32\)
\(2x=-40\)
\(x=-\frac{40}{2}\)
\(x=-20\)
a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
ĐKXĐ:x≠0
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2\) \(-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)= \left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
⇔\(\left(x+4\right)^2=16=4^2=\left(-4\right)^2\)
⇔\(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{-8\right\}\)
đề yêu cầu gì vậy