Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>2=2(luôn đúng)
a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)
\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)
=>-216x=216
hay x=-1
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
Bạn nhân đa thức với đa thức
Theo bài ra, ta suy ra được:
32x^5 +1 -(32x^5 -1) =2
2 = 2
Vậy có vô số x thỏa mãn đề bài.
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>0x=0(luôn đúng)
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(8x^3+16x^2+8x-4x^4-8x^3-4x^2-x^2-2x-1=4x^2+4x+4\)
\(11x^2+6x-4x^4-1=4x^2+4x+4\)
\(11x^2+6x-4x^4-1-4x^2-4x-4=0\)
\(7x^2+2x-4x^4-5=0\)
\(\left(x-1\right)\left(-4x^2-8x-5\right)=0\)
TH1 : \(x-1=0\Leftrightarrow x=1\)
TH2 : \(-4x^2-8x-5=0\)
\(\Delta=\left(-8\right)^2-4\left(-4\right)\left(-5\right)=64-80=-16< 0\)
Nên phương trình vô nghiệm
Vậy \(S=\left\{1\right\}\)
\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(< =>\frac{\left(-4x^2+8x-1\right)\left(x^2+2x+1\right)}{4\left(x^2+x+1\right)}=0\)
Do \(x^2+x+1\ne0\)
\(< =>\orbr{\begin{cases}-4x^2+8x-1=0\\x^2+2x+1=0\end{cases}}\)\(< =>\orbr{\begin{cases}\Delta=48>0\\\Delta=0\end{cases}}\)
\(< =>\orbr{\begin{cases}\hept{\begin{cases}x_1=\frac{-8+\sqrt{48}}{-8}=\frac{2-\sqrt{3}}{2}\\x_2=\frac{-8-\sqrt{48}}{-8}=\frac{2+\sqrt{3}}{2}\end{cases}}\\x_1=x_2=-2\end{cases}}\)tự giải !