Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
[ 7/8x + 5/6x ] - [ 1/2x + 5 ] = 0
7/8x + 5/6x -1/2x -5 =0
7/8x + 5/6x -1/2x = 5
x ( 7/8 + 5/6 - 1/2 ) =5
x . 29/24 = 5
x = 5 : 29/24 = 120/29
xin lỗi nhé, làm lại
[ 7/8x + 5/6] -[1/2x + 5] = 0
7/8x + 5/6-1/2x-5=0
7/8x - 1/2x + 5/6 - 5 =0
7/8x-1/2x = 0 + 5 - 5/6 = 25/6
x( 7/8 -1/2) = 25/6
x. 3/8 = 25/6
x = 25/6 :3/8 = 100/9
a) ( 2x - 3 ) - ( x - 5 ) = ( x + 7 ) - ( x + 2 )
<=> 2x - 3 - x + 5 = x + 7 - x - 2
<=> x = 3
b)(7x-5)-(6x+4)=(2x+3)-(2x+1)
<=> 7x - 5 - 6x - 4 = 2x + 3 - 2x - 1
<=> x = 11
c)(9x-3)-(8x+5)=(3x+2)
<=> 9x - 3 - 8x - 5 = 3x + 2
<=> -2x = 10
<=> x = -5
d)(x+7)-(2x+3)=(3x+5)-(2x+4)
<=> x + 7 - 2x - 3 = 3x + 5 - 2x - 4
<=> -2x = -3
<=> x = 3/2
ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠ
2x-1 | -1 | 3 | -3 | 1 | 2 | ||
y+5 | -30 | 10 | -10 | 30 | |||
x | |||||||
y |
Bạn tự điền , chú ý 2x-1 là số lẻ
(2x-1)+(4x-2)+(8x-4)+...+(400x-200)= 5+10+...+1000
<=> (2x-1) + 2 (2x-1) + 4 (2x-1) + ...+ 200 (2x-1) = 5.(1 + 2 + ...+ 200)
<=> (2x-1) (1 + 2 + 4 +... + 200) = 5.(1 + 2 + ...+ 200)
<=> 2x - 1 = 5
=> 2x = 5 + 1 = 6
=> x = 3
a) (x2 - 121) . (2x + 3) = 0
=>x2-121=0 hoặc 2x+3=0
+)Nếu x2-121=0
=>x2=0+121=121
=>x2=(-11)2 hoặc x2=112
=>x=-11 hoặc x=11
+)Nếu 2x+3=0
=>2x=0-3=-3
=>x=(-3):2=\(\frac{-3}{2}\)
Vậy x=-11 hoặc x=11 hoặc x=\(\frac{-3}{2}\)
b) 2x2 - 8x = 0
=>2x(x-4)=0
=>x=0 hoặc x-4=0
Nếu x-4=0
=>x=0+4=4
Vậy x=0 hoặc x=4
c) (3x + 1)5 = (3x + 1)4
=>(3x+1)5:(3x+1)4=(3x+1)4:(3x+1)4
=>3x+1=1
=>3x=1-1=0
=>x=0:3=0
Vậy x=0
a)(x2 - 121) . (2x + 3) = 0
=>x2-121=0 hoặc 2x+3=0
- Với x2-121=0
<=>x2=121 <=>x=±11
- Với 2x+3=0
<=>2x=-3 <=>x=-3/2
b) 2x2 - 8x = 0
=>2x(x-4)=0
=>2x=0 hoặc x-4=0
=>x=0 hoặc x=4
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
(8x - 1)2x + 1 = 52x + 1
=> 8x - 1 = 5
=> x = 3/4
\(\left(8x-1\right)^{2x}+1=5^{2x}+1\)
\(\Rightarrow8x-1=5\)
\(8x=6\)
\(x=\frac{3}{4}\)