Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
Vì \(3x=8y\Rightarrow\frac{x}{8}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
\(\Rightarrow x=2.8=16\) Thử lại : \(3x=16\times3=48\)
\(\Rightarrow y=2.6\div2=6\) \(8y=6\times8=48\)
Vậy \(x=16;y=6\)
Vì \(3x=2y\)nên:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Ta thấy: \(\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{2y}{6}=\frac{x-2y}{6-4}=\frac{4}{2}=2\)
\(\Rightarrow x=2.2=4\)
\(\Rightarrow y=2.3=6\)
\(-8x=-10y\Leftrightarrow\frac{-8x}{40}=\frac{-10y}{40}\Leftrightarrow\frac{-x}{5}=\frac{-y}{4}\Leftrightarrow\frac{-5x}{25}=\frac{-2y}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{-5x}{25}=\frac{-2y}{8}=\frac{-5x-2y}{25+8}=\frac{396}{33}=12\)
\(\Leftrightarrow\frac{-x}{5}=12\Leftrightarrow-x=60\Leftrightarrow x=-60\)
\(\Leftrightarrow\frac{-y}{4}=12\Leftrightarrow-y=48\Leftrightarrow y=-48\)
Vậy \(x=-60;y=-48\)
1. Ta có: \(3x=8y\)=> \(\frac{x}{8}=\frac{y}{3}\)=> \(\frac{x}{8}=\frac{2y}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy x = 16 và y = 6
2. xem lại đề
3x = 8y và x - 2y = 4 . Tìm x và y
3x = 8y
\(\Rightarrow\frac{x}{8}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}=\frac{x-2y}{8-2}=\frac{4}{2}=2\)
Từ \(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{2y}{6}=2\Rightarrow2y=12\Rightarrow y=6\)
Vậy x= 16 và y = 6
\(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{5}.\frac{1}{8}=\frac{y}{6}.\frac{1}{8}\Rightarrow\frac{x}{40}=\frac{y}{48}\left(1\right)\)
\(\Leftrightarrow\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{y}{8}.\frac{1}{6}=\frac{z}{11}.\frac{1}{6}\Rightarrow\frac{y}{48}=\frac{z}{66}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)
Áp dụng tính chát của dãy tỉ số bằng nhau ta có :
Em tự thay số vào mà tính nha
Study well
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
6x = 4y suy ra x/4 = y/6 <=> x/12 = y/18 (1)
4y = 3z suy ra y/3 = z/4 <=> y/18 = z/24 (2)
Từ (1) và (2) suy ra:
x/12 = y/18 = z/24 = (x+y+z)/(12+18+24) = 18/54m = 1/3
Vậy: x = 12 : 3 = 4
y = 18 : 3 = 6
z = 24 : 3 = 8
b)3 x = 2y => x/2 =y/3
2y=z=>y/1=z/2=>y/3 = z/6
x + y + z/2 + 3 + 6 = 99/11 = 9
x = 18 ; y = 27 ; z = 54
1/
Ta có
\(6x=4y=3z\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
Do đó
\(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{4}=2\Rightarrow z=8\)
vậy x=4 ; y=6 ; z=8.
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
-8x = -10 y
suy ra \(\frac{x}{10}\) = \(\frac{y}{8}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}\) = \(\frac{y}{8}\) = \(\frac{x-y}{10-8}\)
mà x-y = 4 ( theo bài cho)
suy ra \(\frac{x}{10}\) = \(\frac{y}{8}\) = \(\frac{4}{2}\) = 2
+) \(\frac{x}{10}\) = 2 suy ra x =20
+)\(\frac{y}{8}\) = 2 suy ra y = 16
vậy x=20 ; y =16