Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
Sửa đề:
Ta có:\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\forall n\)
\(\Rightarrowđpcm\)
a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).
b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)
\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)
\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)
\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)
c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)
\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)
\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)
\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)
d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)
\(\Leftrightarrow1,05^n\ge2\)
\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)
a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
Bài 1:
a) \(3x-\left(5-17\right)=2x+7\)
\(\Rightarrow3x+12=2x+7\)
\(\Rightarrow x+5=0\)
\(\Rightarrow x=-5\)
Vậy \(x=-5\)
b) \(10-\left(5-x\right)=30+\left(2x-3\right)\)
\(\Rightarrow10-5+x=30+2x-3\)
\(\Rightarrow5+x=27+2x\)
\(\Rightarrow x+22=0\)
\(\Rightarrow x=-22\)
Vậy \(x=-22\)
Bài 2:
Giải:
a) Ta có: \(15⋮n-2\)
\(\Rightarrow n-2\in\left\{-1;1;-15;15\right\}\)
+) \(n-2=-1\Rightarrow n=1\)
+) \(n-2=1\Rightarrow n=3\)
+) \(n-2=-15\Rightarrow n=-13\)
+) \(n-2=15\Rightarrow n=17\)
Vậy \(n\in\left\{1;3;-13;-17\right\}\)
b) Ta có: \(n-2⋮n+1\)
\(\Rightarrow\left(n+1\right)-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;3;-3\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;2;-2;-4\right\}\)
c) Ta có: \(5n+3⋮n+1\)
\(\Rightarrow\left(5n+5\right)-2⋮n+1\)
\(\Rightarrow5\left(n+1\right)-2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;2;-2\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=2\Rightarrow n=1\)
+) \(n+1=-2\Rightarrow n=-3\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\)
d) Ta có: \(n^2+n+7⋮n+1\)
\(\Rightarrow n\left(n+1\right)+7⋮n+1\)
\(\Rightarrow7⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;7;-7\right\}\)
+) \(n+1=1\Rightarrow n=0\) ( t/m )
+) \(n+1=-1\Rightarrow n=-2\) ( t/m )
+) \(n+1=7\Rightarrow n=6\) ( t/m )
+) \(n+1=-7\Rightarrow n=-8\) ( không t/m )
Vậy \(n\in\left\{0;-2;6\right\}\)
Dễ dàng nhận thấy \(\left(P\right)//\left(Q\right)\)
\(\Rightarrow R=\frac{1}{2}.d\left(\left(P\right);\left(Q\right)\right)\)
Chọn \(A\left(0;0;2\right)\in\left(P\right)\)
\(\Rightarrow d\left(A;\left(Q\right)\right)=\frac{\left|2.0-1.0+2.2+5\right|}{\sqrt{2^2+1^2+2^2}}=3\) \(\Rightarrow R=\frac{3}{2}\)
Chọn : C.9
Giải thích:
8n+1111...1 (n thừa số 1 )
\(\Rightarrow\) Tổng số số hạng của 1111...1 là n
\(\Rightarrow\) 8n+n=9n
Mà 9n \(⋮\) 9
\(\Rightarrow\)8n + 1111...1 ( n thừa số 1) \(⋮\) 9