Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
a) Để (x - 1)(x + 2) < 0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
TH2 : \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\)
Vậy -2 < x < 1 thì (x - 1)(x + 2) < 0
b) Để (3x + 1)(2x - 3) < 0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}3x+1< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{3}\\x>\frac{3}{2}\end{cases}}\Leftrightarrow x\in\varnothing\)
TH2 : \(\hept{\begin{cases}3x+1>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-\frac{1}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-\frac{1}{3}< x< \frac{3}{2}\)
Vậy -1/3 < x < 3/2 thì (3x + 1)(2x - 3) < 0
tìm giá trị của x để biểu thức A=|3x-3|+||x-4|-3| có giá trị nhỏ nhất,tìm giá trị đó.
a.\(A=\left(x-1\right)^2+2008\)
Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)
Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\)
Vậy Amin = 2008 \(\Leftrightarrow\) x = 1
b. \(B=\left|x+4\right|+1996\)
Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)
Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=0-4\)
\(\Leftrightarrow x=-4\)
Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)
Bài 1
a) có (x-1)^2 lon hơn hoặc bằng 0
=> ( x-1)^2 + 2008 lớn hơn hoac bang 2008
=> A lớn hơn hoac bang 2008
vay giai tri nho nhát la .2008
b) có | x+4| lon hon hoặc bang 0
=>| x+4| + 1996 lon hon hoặc bang 1996
=> B lon hon hoặc bang 1996
vay B nho nhất la 1996
bai 2
a)-( x+1)^2008 nho hơn hoặc bang 0
=> 2010- (x+ 1)^2008 nho hơn hoặc bang 2010
=> P nho hon hoặc bang 2008
vay gia tri lon nhất của P là 2008
những phần kia tương tự như vậy, nhớ like nhé
a, A < = 3
Dấu "=" xảy ra <=> x+1=0 <=> x=-1
Vạy ..........
b, B < = 11
Dấu "=" xảy ra <=> x+1=0 và 2-y=0 <=> x=-1 và y=2
Vậy ............
c, C < = 5
Dấu "=" xảy ra <=> 2x+6=0 và 7-y=0 <=> x=-3 và y=7
Vậy ...........
Tk mk nha
a, ta có !x+1! >_0
\(\Rightarrow\)3-!x+1! _<3-0
\(\Rightarrow A\)_< 3
Vậy GTLN của A là 3
B=3(2x+3).(3x-5)
\(\Rightarrow\) (6x+9) (3x-5) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}6x+9=0\\3x-5=0\end{cases}\Leftrightarrow\left[\begin{array}{nghiempt}6x=-9\\3x=5\end{cases}\Leftrightarrow}\left[\begin{array}{nghiempt}x=\frac{-3}{2}\\x=\frac{5}{3}\end{array}\right.}\)
vì X nhận giá trị âm nên X = \(\frac{-3}{2}\)
mk ko hiểu dòng chữ toàn là TA