Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-x-y+1=0\)
\(\Rightarrow x.\left(y-1\right)-\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right).\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(x=y=1\)
Chúc bạn học tốt!!!
Tìm x,y biết:
xy-x-y+1=0
=> x(y-1)-y=0-1
=> x(y-1)- (y-1)= (-1)
=> (y-1)(x-1)=(-1)
\(\Rightarrow\left[{}\begin{matrix}y-1=1;x-1=-1\\y-1=-1;x-1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2;x=0\\y=0;x=2\end{matrix}\right.\)
Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?
Bạn kiểm tra lại nha
\(3x^2-8x+5-A=-2A+4x-6+x^2\)
\(\Rightarrow3x^2-8x+5=-2A+A+4x-6+x^2\)
\(\Rightarrow3x^2-8x+5=-A+4x-6+x^2\)
\(\Rightarrow3x^2=-A+4x-6+x^2-5+8x\)
\(\Rightarrow3x^2=-A+12x-11+x^2\)
\(\Rightarrow3x^2-x^2=-A+12x-11\)
\(\Rightarrow2x^2=-A+12x-11\)
Làm sao tìm được A nhỉ
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)
\(\Rightarrow x=y=z=t\)
Thay vào P ta được :
\(P=1+1+1+1=4\)
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
\(7x=4y=2z\)
\(\Leftrightarrow\dfrac{7x}{28}=\dfrac{4y}{28}=\dfrac{2z}{28}\)
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{z}{14}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{z}{14}=\dfrac{x+y+z}{4+7+14}=\dfrac{25}{25}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{y}{7}=1\\\dfrac{z}{14}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\\z=14\end{matrix}\right.\)
Vậy ..