Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có bậc là 3 => ( \(^{m^2}\)- 25 ) \(^{x^4}\)= 0
hay ( \(m^2\)- 25 ) = 0 => \(m^2\)= 25
=> m = 5
Để f(x) là đa thức bậc 3 thì
\(\hept{\begin{cases}m^2-25=0\\20+4m\ne0\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm5\\m\ne-5\end{cases}\Rightarrow}m=5\)
Vậy m = 5
khi x=1 thì f(1)=0
f(1)= 3-7+5-36-4+8-a-1=0
<=> -32-a=0
<=> a=-32
a)
x : ( -3/5 )^2 = ( -3/5 )
x = (-3/5)^3
x = -27/125
b)
(4/7)^4 . x = ( 4/7 )^6
x = (4/7)^6 : (4/7)^4
x = (4/7)^2
x = 16/49
a. x : \(\left(-\frac{3}{5}\right)^2\)= \(-\frac{3}{5}\)
x = \(-\frac{3}{5}.\left(-\frac{3}{5}\right)^2\)
x = \(\left(-\frac{3}{5}\right)^3\)
b. \(\left(\frac{4}{7}\right)^4.\)x = \(\left(\frac{4}{7}\right)^6\)
x = \(\left(\frac{4}{7}\right)^6:\left(\frac{4}{7}\right)^4\)
x = + \(\left(\frac{4}{7}\right)^2\)
Thôi dc rồi mình làm theo ý mình nhé.
\(A\left(x\right)=4x^4-6x^2-7x^3-5x-6\)
\(B\left(x\right)=-5x^2+7x^3+5x+4-4x^4\)
Bài này không yêu cầu sắp xếp nên thôi tính luôn. Mình chỉ sắp xếp lại KQ thôi
a/ - Tính:
\(M\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(M\left(x\right)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4\)
\(M\left(x\right)=x^2-2\)
- Tìm nghiệm:
\(M\left(x\right)=x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2};x=\sqrt{2}\)
b/ \(C\left(x\right)+B\left(x\right)=A\left(x\right)\Rightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6-\left(-5x^2+7x^3+5x+4-4x^4\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6+5x^2-7x^3-5x-4+4x^4\)
\(C\left(x\right)=8x^4-14x^3-x^2-10x-10\)
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
7x3 . ( 65 + 68 ) = 56
=> x3 . ( 7776 + 68 ) = 56 : 7
=> x3 . 7844 = 8
\(\Rightarrow x^3=\frac{8}{7844}\)
\(\Rightarrow x=\sqrt[3]{\frac{8}{7844}}\)
có lm mới có ăn :))))))))