K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

7x^2 - 42x + 63 = 0

<=>7.(x^2 - 6x + 9) = 0

<=>7.(x - 3)^2 = 0

<=>x - 3 = 0

<=> x = 3

28 tháng 10 2019

\(|2x^2-3x+4|-|2x-x^2-1|=0\)

\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)

Vậy ...

31 tháng 10 2019

\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)

\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(TH1:3x^2-5x+5=0\)

Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)

\(TH2:x^2-x+3=0\)

Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)

Vậy pt vô nghiệm

Câu 1:
TXĐ:D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=2x^4-3x^2+1=f\left(x\right)\)

=>f(x) là hàm số chẵn

 

7 tháng 12 2019

\(\sqrt{3x+7}-\sqrt{x-1}=3\)

Đkxđ:\(\left\{{}\begin{matrix}3x+7\ge0\\x+1\ge0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x\ge-\frac{7}{3}\\x\ge-1\end{matrix}\right.\rightarrow x\ge-1\)

\(PT\rightarrow\sqrt{3x+7}=2+\sqrt{x+1}\)

\(\Rightarrow3x+7=\left(2+\sqrt{x+1}\right)^2\)

\(\Rightarrow3x+7=4+4\sqrt{x+1}+x+1\)

\(\Rightarrow2x+2=4\sqrt{x+1}\)

\(\Rightarrow x+1=2\sqrt{x+1}\)

\(\Rightarrow x^2+2x+1=4\left(x+1\right)\)

\(\Rightarrow x^2-2x-3=0\)

\(\Rightarrow x^2-3x+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

Vậy ....

6 tháng 5 2021

\(S_{MND}???\)

20 tháng 11 2021

a) (P) có đỉnh I(-1; -2)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{\Delta}{4a}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2.2\\b^2-4.2.c=8.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\b^2-8c=16\end{matrix}\right.\Leftrightarrow4^2-8c=16\)

                                                                \(\Leftrightarrow c=0\)

=> y = 2x2 + 4x

b) (P) có trục đối xứng x = 1 và cắt trục tung tại M(0; 4)

\(M\in\left(P\right)\Rightarrow4=2.0^2+b.0+c\)

               \(\Leftrightarrow c=4\) 

Trục đối xứng: \(x=-\dfrac{b}{2a}=1\)

<=> -b = 2a

<=> -b = 2.2 

<=> b = -4

=> y = 2x2 - 4x + 4

c) Đi qua 2 điểm A(1; 6), B(-1; 0)

\(A\in\left(P\right)\Rightarrow6=2.1^2+b.1+c\)

\(\Leftrightarrow b+c=4\) (1)

\(B\in\left(P\right)\Rightarrow0=2.\left(-1\right)^2+b\left(-1\right)+c\)

\(\Leftrightarrow-b+c=-2\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}b+c=4\\-b+c=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\c=1\end{matrix}\right.\)

=> y = 2x2 + 3x + 1

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)