Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!
a) S= { -2/3;-3/2}
b) S= {-5;1}
c) S= {-1/2;1}
d) S= {3/7;4}
e) S= {3;5}
NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
a) \(x^3+2x^2y+xy^2-4xz^2=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-\left(2z\right)^2\right]\)
\(=x\left(x+y-2z\right)\left(x+y+2z\right)\)
b)\(-8x^3+12x^2y-6xy^2+y^3=y^3+3.y.\left(2x\right)^2-3.y^2.2x-\left(2x\right)^3\)\(=\left(y-2x\right)^3\)
c)\(6x^2+7x-5=2x\left(3x+5\right)-\left(3x+5\right)=\left(3x+5\right)\left(2x-1\right)\)
d)\(x^4+64y^4=\left(x^2\right)^2+2.x^2.8y^2+\left(8y^2\right)^2-16x^2y^2=\left(x^2+8y^2\right)-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
e)\(x\left(2-x\right)-x+2=x\left(2-x\right)+\left(2-x\right)=\left(2-x\right)\left(x+1\right)\)
f)\(2x^2+3x-2=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)
h)\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
g)\(x^3-3x^2-9x+27=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)\)\(=\left(x-3\right)^2\left(x+3\right)\)
B2: \(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\end{cases}}\)
a. $3x^2-7x+8 = 0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})+\frac{47}{12}=0$
$\Leftrightarrow 3(x-\frac{7}{6})^2+\frac{47}{12}=0$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{-47}{12}<0$ (vô lý - loại)
$\Rightarrow$ PT vô nghiệm.
b.
$2x^2-6x+1=0$
$\Leftrightarrow 2(x^2-3x+1,5^2)-3,5=0$
$\Leftrightarrow 2(x-1,5)^2=3,5$
$\Leftrightarrow (x-1,5)^2=1,75$
$\Leftrightarrow x-1,5=\pm \sqrt{1,75}$
$\Leftrightarrow x=1,5\pm \sqrt{1,75}$
Ta có : (2x - 1)2 - 25 = 0
=> (2x - 1)2 = 25
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(\Leftrightarrow\frac{-x^4-3x^3-6x+4}{\left(x^2+2x+2\right)\left(x^2+4x+2\right)}=0\)
\(\Rightarrow\frac{1}{x^2+2x+2}=0\left(1\right)\)
\(\Rightarrow\frac{1}{x^2+4x+2=0}\left(2\right)\)
<=>x2+x+2=0(1)
=>12-4(1.2)=-7(1)
vì -7<0 =>\(\Delta<0\)(1)
=>x4-3x3-6x+4=0(2)
=>(-4)2-4(1.2)=8
\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{4\pm\sqrt{8}}{2}\)
=>x=\(2-\sqrt{2}\) hoặc \(\sqrt{2}+2\)
b) tự làm tương tự
\(7x^2+\left(2x^2+3x^5\right)\)
\(=7x^2+2x^2+3x^5\)
\(=3x^5+9x^2\)