K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài giải :

Ta có :

\(7^3\sqrt{8}=9701505038\)

\(8^3\sqrt{7}=1354624671\)

Vì 9701505038 > 1354624671

=> \(7^3\sqrt{8}>8^3\sqrt{7}\)

Vậy .....

1 tháng 7 2019

\(7\sqrt[3]{8}=7.2=14\)

\(8\sqrt[3]{7}\approx15,303\)

Vì \(15,303>14\)nên \(8\sqrt[3]{7}>7\sqrt[3]{8}\)

8 tháng 9 2021

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2

21 tháng 8 2017

méo biết

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)

b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)

\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)

mà -1512>-2058

nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)

13 tháng 6 2019

giải giúp mình đi mai là mình đi học rồi

13 tháng 6 2019

Ta có:

bla bla ........

vậy đáp số là... quên mất rồi

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

7 tháng 8 2016

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)

\(\sqrt{8}+3>6+\sqrt{2}\)

7 tháng 8 2016

Ta có:

\(a.\)Ta có:

\(7>4\) nên \(\sqrt{7}>\sqrt{4}\) 

\(\Rightarrow\)  \(\sqrt{7}>2\)  \(\left(1\right)\)

và  \(5>4\)  nên  \(\sqrt{5}>\sqrt{4}\)

\(\Rightarrow\)  \(\sqrt{5}>2\)  \(\left(2\right)\)

Mặt khác, ta lại có:  \(\sqrt{12}< \sqrt{16}=4\)  \(\left(i\right)\)

Do đó,  từ hai bđt  \(\left(1\right)\)  và   \(\left(2\right)\) , kết hợp với chú ý  \(\left(i\right)\)  ta suy ra được:

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)