\(7\left(2x-4\right)>1-4x\)      giải bất pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(7\left(2x-4\right)>1-4x\)

\(\Leftrightarrow14x-28-1+4x>0\)

\(\Leftrightarrow x>\dfrac{29}{18}\)

19 tháng 10 2021

sao ko thay --1 thành> gải thích

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết

26 tháng 12 2018

a)\(\left\{{}\begin{matrix}x=7-2y\\3\left(7-2y\right)-4y=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x=7-2y\\21-6y-4y=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x=7-2y\\20=10y\end{matrix}\right.< =>\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy ...

b)\(\left\{{}\begin{matrix}y=7-2x\\4x-3\left(7-2x\right)=-1\end{matrix}\right.< =>\left\{{}\begin{matrix}y=7-2x\\4x-21+6x=-1\end{matrix}\right.< =>\left\{{}\begin{matrix}y=7-2x\\10x=20\end{matrix}\right.< =>\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

27 tháng 12 2018

a, \(\left\{{}\begin{matrix}x+2y=7\left(1\right)\\3x-4y=1\left(2\right)\end{matrix}\right.\)
Nhân cả 2 vế pt (1) với 3 ta được hệ phương trình
\(\left\{{}\begin{matrix}3x+6y=21\left(3\right)\\3x-4y=1\left(4\right)\end{matrix}\right.\)
Trừ 2 vế pt (3) cho pt (4)
=>10y=20
\(\Leftrightarrow y=2\) thay vào (1) ta có: x+4=7\(\Leftrightarrow x=3\)
Vậy nghiệm của hpt (x;y)=(3;2)
b,\(\left\{{}\begin{matrix}2x+y=7\left(1\right)\\4x-3y=-1\left(2\right)\end{matrix}\right.\)
Nhân 2 vế pt (1) vs 2 ta được
4x+2y=14(3)
Trừ 2 vế pt(3) cho pt(2)ta có
5y=15
\(\Leftrightarrow\)y=3 thay vào (1)
=>2x+3=7\(\Leftrightarrow x=2\)
Vậy nghiệm của hpt (x;y)=(2;3)

NV
29 tháng 6 2019

a/ ĐKXĐ:...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)

\(\Rightarrow5x^2+11xy-16y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)

Bạn tự thế vào một trong hai pt giải tiếp

29 tháng 6 2019

Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v

ĐK: \(x\ge-\frac{3}{2}\)

PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)

Giải cái ngoặc nhỏ suy ra x = -1

Giải cái ngoặc to:

\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)

Nghiệm xấu quá :( => em bí.

31 tháng 10 2015

c) (d tương tự)

\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)

và \(a+2b=5\)

--> Thế

\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)

Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)

Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.

y = 0 thì x = 1 (không thỏa pt ban đầu)

Xét y khác 0. Chia cả 2 vế của (*) cho y6

\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)

Không khả quan lắm :)) bạn tự tìm cách khác nhé.

Bài 1: Giải phương trình

a) ĐKXĐ: \(x\ge3\)

Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)

\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)

\(\Leftrightarrow100\cdot\left|x-3\right|=20\)

\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{16}{5}\right\}\)

b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)

\(\Leftrightarrow\left|x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)

Vậy: S={10;-4}

c) Ta có: \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

NV
26 tháng 9 2020

a/ ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)

Đặt \(\sqrt{x^2+x+1}=t>0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+1}=1\)

\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)