Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=75\left(27+25-2\right)=75\cdot50=3750\)
2: \(=15\left(23+37\right)+55=15\cdot60+55=955\)
3: \(=36\cdot14+36\cdot17+36\cdot69\)
\(=36\cdot100=3600\)
4: \(=200\cdot\left(32+68\right)=200\cdot100=20000\)
I was COME BACK
2/ Đặt \(x=a;\sqrt{25-x^3}=b\) thì \(a^3+b^3=25\)
Theo đề bài ta có hệ: \(\left\{{}\begin{matrix}a^3+b^3=25\\ab\left(a+b\right)=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+b^3+3ab\left(a+b\right)=115\\ab\left(a+b\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{115}\\ab=\frac{30}{a+b}=\frac{30}{\sqrt[3]{115}}\end{matrix}\right.\). Theo hệ thức Viet đảo: a,b là 2 nghiệm của pt:
\(t^2-\sqrt[3]{115}t+\frac{30}{\sqrt[3]{115}}=0\). Hay là \(1/4\, \left( -2\,t+\sqrt [3]{115} \right) ^{2}+{\frac {{115}^{2/3}}{92 }} =0\) (vô nghiệm)
Vậy ...
1/ Sol nốt rồi ngủ:v
Đặt \(\sqrt[3]{6x+1}=t\Rightarrow x=\frac{t^3-1}{6}\). Thay vào, pt tương đương:
\(\left( {t}^{3}-3\,t-1 \right) \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) =0 \)
Trước hết ta chứng minh pt bậc 6 vô nghiệm:
\( \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) >0 \)
Thật vậy, dễ thấy \(t^2-3t+\frac{9}{4}=\left(t-\frac{3}{2}\right)^2\ge0\)
Do đó ta cần chứng minh:\({t}^{6}+3\,{t}^{4}-2\,{t}^{3}+8\,{t}^{2}+{\frac{31}{4}} > 0\)
Hay là: \(t^6+t^2\left(3t^2-2t+8\right)+\frac{31}{4}>0\)
Bất đẳng thúc hiển nhiên. Cuối cùng, ta tìm t thỏa mãn:
\(\left( {t}^{3}-3\,t-1 \right) =0\). Em bí mất ;( Dùng Wolfram Alpha nó ra nghiệm phức.
@Akai Haruma giúp em phần này với ạ!
1/\(4x^4+12x^3-47x^2+12x+4=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3+20x^2-7x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(2x^2+11x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=\frac{-11\pm\sqrt{105}}{4}\end{matrix}\right.\)
Vậy ....
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)
\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)
Vậy x=50;y=75;z=-100
d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)
5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
=>3/4x+3/4x+x=30
=>5/2x=30
hay x=30:5/2=30x2/5=12