K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(-\frac{7}{4}\right)^2+\left(-\frac{3}{4}\right)^9.64-2018^0=\frac{49}{16}+\left(-\frac{19683}{262144}\right).64-1\)

\(=\frac{49}{16}-\frac{19683}{4096}-1\)\(=\frac{12544-19683-4096}{4096}\)

\(=-\frac{11235}{4096}\)

8 tháng 7 2018

a ) 

\(5x\left(x-3\right)+7\left(x-3\right)=0\)

\(\Rightarrow\left(5x+7\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+7=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-7\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{7}{5}\\x=3\end{cases}}}\)

Vậy ...

b ) 

\(x^{2017}=x^{2018}\)

\(\Rightarrow x^{2017}-x^{2018}=0\)

\(\Rightarrow x^{2017}\left(1-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^{2017}=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy ...

c ) 

\(2x^2=x\)

\(\Rightarrow2x^2:x=1\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

Vậy ...

8 tháng 7 2018

e ) 

\(x^5=x^4\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)( làm tương tự như phần b )  

24 tháng 7 2018

chẳng có đề bài biết làm ntn

19 tháng 2 2020

\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)

Mà \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Vậy \(x=-2014\)

27 tháng 11 2019

Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)

\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)

\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)

\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)

Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)

\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)

\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)

1 tháng 4 2020

Giải các pt sau:

a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2

1 tháng 4 2020

b.

3x-1=7-x
=>3x-1-(7-x)=0
=>3x-1-7+x=0
=>4x-8=0
=>4x=8
=>x=2

17 tháng 3 2020

\(a+b+c=0\)

\(\left(a+b+c\right)^2=0\)

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(2018+2\left(ab+bc+ca\right)=0\)

\(ab+bc+ca=-1009\)

\(\left(ab+bc+ca\right)^2=\left(-1009\right)^2=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2+2abc\left(b+c+a\right)=1009^2\)

\(a^2b^2+b^2c^2+c^2a^2=1009^2\)

\(a^2+b^2+c^2=2018\)

\(\left(a^2+b^2+c^2\right)^2=2018^2\)

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2018^2\)

\(a^4+b^4+c^4+2\cdot1009^2=2018^2\)

\(a^4+b^4+c^4=2018^2-2\cdot1009^2=2036162\)

19 tháng 3 2021

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)

⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)

\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)

⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)

\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)

⇒ \(x+2021=0\)

⇔ \(x=-2021\)

\(Vậy\) \(x=-2021\)