Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Phương trình bậc hai a x 2 + b x + c = 0 sẽ có hai nghiệm phân biệt trái dấu khi và chỉ khi ac < 0.
Nếu m = 1 hoặc m = -1 thì phương trỉnh đã cho có nghiệm duy nhất (loại).
( m 2 - 1 ) ( m 2 + m ) < 0 ⇔ ( m + 1 ) 2 m ( m - 1 ) < 0
⇔ 0 < m < 1
Để xét bất phương trình bậc nhất vô nghiệm hay luôn đúng với mọi x ta chỉ cần xét hệ số a= 0.
* Với m = 0 thì bất phương trình đã cho trở thành:
0 x ≤ 0 ( luôn đúng với mọi x) ( loại)
* Với m = -3 thì bất phương trình đã cho trở thành:
0 x ≤ 9 (luôn đúng với mọi x) ( loại)
Vậy không có giá trị nào của m để bất phương trình đã cho vô nghiệm
Chọn A
ĐKXĐ:
và m2x2 – 2mx+ m2+2≠ 0
+Xét tam thức bậc hai :
f(x) = 2x2 -2( m+1) x+ m2+1
Ta có hệ số a= 2> 0;
∆ = (m+1) 2- 2( m2+1) = -(m-1) 2 ≤ 0
Suy ra với mọi m ta có f(X) ≥ 0 vớ i mọi m(1)
+ Xét tam thức bậc hai:
g(x) = và m2x2 – 2mx+ m2+2
Với m= 0 ta có g(x) = 2> 0
xét với m≠ 0 ta có:
hệ số a= m2> 0
và ∆’ = m2- m2(m2+2) = -m2(m2+1) < 0
Suy ra với mọi m ta có g(x) > 0 với mọi x(2)
Từ (1) và (2) suy ra với mọi m thì
và m2x2 – 2mx+ m2+2≠ 0 đúng với mọi giá trị của x
Vậy tập xác định của hàm số là D = R
AHAHA toán lớp 10