
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\dfrac{7}{15}+\left(\dfrac{-4}{11}\right)+\dfrac{8}{15}-2,5+\dfrac{7}{15}\)
\(=\dfrac{7}{15}+\left(\dfrac{-4}{11}\right)+\dfrac{8}{15}+\left(\dfrac{-5}{2}\right)+\dfrac{7}{15}\)
\(=\left(\dfrac{7}{15}+\dfrac{8}{15}+\dfrac{7}{15}\right)+\left[\left(\dfrac{-4}{11}\right)+\left(\dfrac{-5}{2}\right)\right]\)
\(=\dfrac{22}{15}+\left(\dfrac{-63}{22}\right)\)
\(=\dfrac{-461}{330}\)
\(=\dfrac{7}{15}+\dfrac{8}{15}+\dfrac{-4}{11}-\dfrac{5}{2}+\dfrac{7}{15}=\dfrac{22}{15}-\dfrac{63}{22}=-\dfrac{461}{330}\)

a
\(-\frac{16}{17}< -\frac{14}{17}< -\frac{12}{17}< -\frac{11}{17}< -\frac{9}{17}< -\frac{3}{17}< -\frac{1}{17}\)
b
\(-\frac{5}{2}< -\frac{5}{3}< -\frac{5}{4}< -\frac{5}{7}< -\frac{5}{8}< -\frac{5}{9}< -\frac{5}{11}\)
P/S:Lẽ ra ko lm bài này nhưng thấy chứ đang vội thì lm nốt:((
a) Vì -16 < -14 < -12 < -11 < -9 < -3 < -1
=> \(\frac{-16}{17}\), \(\frac{-14}{17}\), \(\frac{-12}{17}\), \(\frac{-11}{17}\), \(\frac{-9}{17}\), \(\frac{-3}{17}\), \(\frac{-1}{17}\)
b) Vì 2 < 3 < 4 < 7 < 8 < 9 < 11
mà theo lí thuyết ta có : phân số nào có mẫu lớn hơn thì phân số đó bé hơn và ngược lại
=> \(\frac{-5}{11}\), \(\frac{-5}{9}\), \(\frac{-5}{8}\), \(\frac{-5}{7}\), \(\frac{-5}{4}\), \(\frac{-5}{3}\), \(\frac{-5}{2}\)
~ Học tốt ~

b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)
\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)
\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)
\(=\frac{22}{29}.\)
Chúc bạn học tốt!

7.(\(\frac{3}{8}+\frac{11}{7}\)) - 11.\(\frac{7}{17}\) + 7.\(\frac{5}{8}\)
= 7(\(\frac{3}{8}\) +\(\frac{11}{7}\) -\(\frac{11}{7}+\frac{5}{8}\))
=7(\(\frac{3}{8}+\frac{5}{8}\))
= 7.1
=7

\(\left(\dfrac{-1}{5}+\dfrac{3}{7}\right):\dfrac{2}{11}+\left(\dfrac{-4}{5}+\dfrac{4}{7}\right):\dfrac{2}{11}\)
\(=\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)
\(=\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)
\(=\dfrac{2}{11}:0=0\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(B=\frac{1}{3}-\frac{1}{111}\)
\(B=\frac{12}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

đáp án bằng 1