Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2mx + m2 -2 = 0
\(\Delta\)= 4m2 - 4 (m2 -2)
= 4m2 - 4m2 + 8
= 8 >0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{2m+\sqrt{8}}{2}\)= m +\(\sqrt{2}\)
x2 = m - \(\sqrt{2}\)
ta có \(|\)x13 - x23 \(|\)= 10\(\sqrt{2}\)
\(|\)(m +\(\sqrt{2}\))3 - (m - \(\sqrt{2}\))3 |= 10 \(\sqrt{2}\)
giải nốt pt này là ra đấy nha
#mã mã#
Đầu tiên cần tìm điều kiện của m để phương trình có 2 nghiệm nha bn
khi đó
\(x_1+x_2=2m\)
\(x_1.x_2=m^2-2\)
Ta có |\(x_1^3-x_2^3\)|=10\(\sqrt{2}\)
|(x1-x2)(x12-x1.x2+x22)|=10\(\sqrt{2}\)
(x1-x2)2. ((x1+x2)2-x1.x2)2=200 ( bước này là bình phương 2 vế nha bn )
(x12+x22-2x1x2) (4m2-m2+2)=200
((x1+x2)2-4x1x2)(3m2+2)=200
(4m2-4m2+8)(3m2+2)=200
3m2 =23
=> m=\(\sqrt{\frac{23}{3}}\)hoặc m=\(-\sqrt{\frac{23}{3}}\)
rồi bn đối chiếu điều kiện của m ở trên để phương trình có 2 no phân biệt nha
( bài mk lm dài có thế có sai sót ...mong bn thông cảm)
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
-_- 1/ bạn làm đc
-_- 2/ Bạn hỏi suốt xao giỏi đc
-_- 3/ Bài này dễ ợt
\(mx^2-2\left(m+2\right)x+m^2+7=0\left(a=m;b=-2m-4;c=m^2+7\right)\)
\(\Delta=\left(-2m-4\right)^2-4m\left(m^2+7\right)=4m^2-16-4m^3-28m\ge0\)
Để pt có 2 nghiệm thì \(\Delta\ge0\)P/s : ko chắc cái ĐK này
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{2m+4}{2};x_1x_2=\frac{m^2+7}{2}\)
Theo bài ra ta có : \(x_1x_2-2\left(x_1x_2\right)=0\)
\(\Leftrightarrow\frac{m^2+7}{2}-2\left(\frac{m^2+7}{2}\right)=0\)
\(\Leftrightarrow\frac{m^2+7}{2}-\frac{2m^2+14}{2}=0\)Khử mẫu ta đc : \(m^2+7-2m^2+14=0\)
\(\Leftrightarrow-m^2+21=0\Leftrightarrow-m^2=-21\Leftrightarrow m^2=21\Leftrightarrow m=\pm\sqrt{21}\)
1. tìm đenta phẩy
sau đó cho đenta phẩy >0
tìm x1+x2,x1*x2 theo hệ thức viets
thay vào ra mà
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)