![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)
\(=x^3+14x^2+27x+51\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)
\(=8x^3+18-8x^3+18=36\)
c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)
\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)
\(=64x^5-1\)
d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)
\(=x^3-x^2+14\)
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a) ĐKXĐ: $x\neq \pm 1$
\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)
b) ĐKXĐ: Với mọi $x\in\mathbb{R}$
\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)
\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)
c) ĐK: $x\neq 1;-2$
\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)
\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)
d) ĐK: $x^2+3x-1\neq 0$
\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)
\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3-4x^2-8x+8\)
\(=x^3+8-4x^2-8x\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=\left(x+2\right)\left(x^2-6x+4\right)\)
\(=\left(x+2\right)\left(x^2-6x+9-5\right)\)
\(=\left(x+2\right)\left[\left(x-3\right)^2-5\right]\)
\(=\left(x+2\right)\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)
b) \(1+6x-6x^2-x\)
\(=1-x+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(6x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bằng phương pháp nào zậy bn????
547675675675678768768789980957457346242645657
![](https://rs.olm.vn/images/avt/0.png?1311)
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\)
\(\left(x^2+4x\right)^2+9x^2-6x\left(x^2+4x\right)\)
\(=\left(x^2+4x\right)\left(x^2+4x-6x\right)+9x^2\)
\(=\left(x^2+4x\right)\left(x^2-2x\right)+9x^2\)
\(=x\left(x+4\right)x\left(x-2\right)+9x^2\)
\(=x^2\left(x^2+4x-2x-8\right)+9x^2\)
\(=x^2\left(x^2+2x-8\right)+9x^2\)
\(=x^4+2x^3-8x^2+9x^2\)
\(=x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(b)\)
\(\left(-6x^3+7x^2-4x+1\right):\left(-2+1\right)\)
\(=\left(-6x^3+7x^2-4x+1\right)\left(-1\right)\)
\(=6x^3-7x^2+4x-1\)
\(c)\)
\(\left(x-1\right)\left(x-2\right)\left(3x-4\right)\)
\(=\left(x^2-3x+2\right)\left(3x-4\right)\)
\(=3x^3-4x^2-9x^2+12x+6x-8\)
\(=3x^3-13x^2+18x-8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-6x+9=\left(x-3\right)^2\)
\(4x^2+4x+1=\left(2x+1\right)^2\)
\(x^3+6x^2+12x+8=x^3+3.x^2.2+3.x.2^2+2^3=\left(x+2\right)^3\)
\(27x^3-27x^2+9x-1=\left(3x-1\right)^3\)( sửa đề chút )
\(\left(3x+2\right)\left(9x^2-6x+4\right)=\left(3x\right)^3+2^3\)( sửa đề chút )
Tham khảo nhé~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2+3\right)\left(3-x^2\right)\)
\(\left(x^2+3\right)\left(-x^2+3\right)\)
\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2-3x^2+9\)
\(-x^2.x^2+9\)
\((6x+x^3+4+4x^2):(x+2) \)
\(= x^2+2x+2 \)
\(\text {Thử lại :} \)
\((x^2+2x+2)(x+2)\)
\(=x^3+2x^2+2x+2x^2+4x+4 \)
\(=x^3+4x^2+6x+4\)
\(\text {Học tốt !}\)