\(6\cdot x^2-x\cdot y+7\cdot y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

A= -x2 -8x+5

A= -(x2 + 8x -5)

A= -(x2+2x4+42-42-5)

A= -(x+4)2+21.Vì -(x+4)2\(\le\)0 =>A\(\le\)21

GTLN A=21 <=>x+4=0 =>x= -4

1 tháng 9 2017

1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24

Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)

hay (x2+7x+6)(x2+7x+16)

2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128

Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)

hay (x2+10x+8)(x2+10x+16)

3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144

Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)

Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

5 tháng 1 2018

Sửa lại đề nha: x+y+z=0

a)

Xét x+y+z=0

(x+y+z)2=02

x2+y2+z2+2xy+2yz+2zx=0

=> x2+y2+z2=-2xy-2yz-2zx

Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)

=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)

Thay x2+y2+z2=-2xy-2yz-2zx vào (1)

=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)

5 tháng 1 2018

b)

Xét x+y+z=0 ba lần:

- Lần 1:x+y+z=0

<=> x+y=0-z

<=>(x+y)2=(0-z)2

<=>x2+2xy+y2=z2

<=>x2+y2-z2=-2xy(1)

-Lần 2: x+y+z=0

<=> y+z=0-x

<=>(y+z)2=(0-x)2

<=>y2+2yz+z2=x2

<=>y2+z2-x2=-2yz(2)

-Lần 3: x+y+z=0

<=>z+x=0-y

<=>(z+x)2=(0-y)2

<=>z2+2zx+x2=y2

<=> z2+x2-y2=-2zx(3)

Thay (1),(2),(3) vào Q, ta có:

=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)