Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\left(x-y\right)\left(y-x\right)=-\left(x-y\right)\left(x-y\right)=-\left(x-y\right)^2\)
Chắc chắn \(-\left(x-y\right)^2=\left(x-y\right)^2\)là khẳng định sai (chỉ đúng khi \(x=y\))
2/ \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
Như vậy khẳng định này đúng.
3/ \(-18x+36=-18x-18.\left(-2\right)=-18\left(x-2\right)\)
Và một lần nữa \(-18\left(x-2\right)=-18\left(x+2\right)\)là khẳng định sai.
4/ Chắc chắn sai vì \(VT\le0\)trong khi \(VP\ge0\)(chỉ đúng khi \(x=2006\))
1) \(2x\left(x-5\right)+\left(x-2\right)\left(x+3\right)=2x^2-10x+x^2+3x-2x-6=3x^2-9x-6\)
2) \(\left(2x-5\right)\left(1-x\right)-\left(x-3\right)\left(-2x\right)=2x-2x^2-5+5x+2x^2-6x=x-5\)
3) \(\left(4x-3\right)\left(4x-3\right)-\left(3x+2\right)\left(3x-2\right)=\left(4x-3\right)^2-9x^2+4=16x^2-24x+9-9x^2+4\)
\(=7x^2-24x+13\)
4) \(\left(2x-1\right)\left(2x+1\right)\left(2x+1\right)-4\left(x^2+1\right)=\left(2x-1\right)[\left(2x+1\right)^2]-4x^2-4\)
\(=\left(2x-1\right)\left(4x^2+4x+4\right)-4x^2-4=8x^3+8x^2+8x-4x^2-4x-4-4x^2-4=8x^3+4x-8\)
5) \(3x\left(2x-8\right)-\left(2-6x\right)\left(5+x\right)=6x^2-24x-10-2x+30x+6x^2=12x^2+4x-10\)
6) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+6x+12x-24+8=-16\)
7) \(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2=x^3+8-x^3+2x^2-2x^2=8\)
a) \(x^2-6x-17=\left(x^2-6x+9\right)-26=\left(x-3\right)^3-26\ge-26\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
b)\(x^2-10x=\left(x^2-10x+25\right)-25=\left(x-5\right)^2-25\ge-25\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
c)\(3x^2-12x+5=3\left(x^2-4x+4\right)-7=3\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
d)\(2x^2-x+1=2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{7}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{4}=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
e)\(x^2+y^2-8x+4y+27=\left(x^2-8x+16\right)+\left(y^2+4y+4\right)+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\forall x\)Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-4=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=-2\end{cases}}\)
f)\(x\left(x-6\right)=x^2-6x=\left(x^2-6x+9\right)-9=\left(x-3\right)^2-9\ge-9\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
h)\(\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)\left(x-5\right)\left(x-2\right)\left(x-5\right)=\left[\left(x-2\right)\left(x-5\right)\right]^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
\(a,=\left(73-27\right)\left(73^2+73\cdot27+27^2\right)=46\cdot8029=369334\\ b,=\left(63-27\right)\left(63+27\right)+\left(72-18\right)\left(72+18\right)\\ =100\cdot36+54\cdot100=100\left(36+54\right)=100\cdot90=9000\\ c,=\left(105-5\right)^3=100^3=1000000\)
2\(x^2\)y2 - 6\(\sqrt{2}\)\(xy\) + 9
= (\(\sqrt{2}\).\(x.y\))2 - 2.\(\sqrt{2}\)\(xy\).3 + 32
= (\(\sqrt{2}\)\(xy\) - 3)2