Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\cdot x-15=x+35\)
\(\Rightarrow3x-x=35+15\)
\(\Rightarrow 2x=50\)
\(\Rightarrow x = 50:2\)
\(\Rightarrow x= 25\)
\(b,(8x-16)(x-5)=0\)
\(+, TH1: 8x-16=0\)
\(\Rightarrow8x=16\)
\(\Rightarrow x = 16:8\)
\(\Rightarrow x=2\)
\(+,TH2: x-5=0\)
\(\Rightarrow x =5\)
\(c,x(x+1)=2+4+6+8+10+...+2500\) \(^{\left(1\right)}\)
Đặt \(A=2+4+6+8+10+...+2500\)
Số các số hạng của \(A\) là: \(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng \(A\) bằng: \(\left(2500+2\right)\cdot1250:2=1563750\)
Thay \(A=1563750\) vào \(^{\left(1\right)}\), ta được:
\(x\left(x+1\right)=1563750\)
\(\Rightarrow x\left(x+1\right)=1250\cdot1251\)
\(\Rightarrow x =1250\)
#\(Toru\)
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
\(TH1:x\ge0\)
\(\Rightarrow x\left(1-\dfrac{5}{6}\right)=\dfrac{4}{9}.\dfrac{15}{8}\)
\(\Rightarrow x=\dfrac{\dfrac{4}{9}.\dfrac{15}{8}}{1-\dfrac{5}{6}}=5\left(TM\right)\)
\(TH2:x< 0\)
\(\Rightarrow x\left(-1-\dfrac{5}{6}\right)=\dfrac{4}{9}.\dfrac{15}{8}\)
\(\Rightarrow x=\dfrac{\dfrac{4}{9}.\dfrac{15}{8}}{-1-\dfrac{5}{6}}=-\dfrac{5}{11}\left(TM\right)\)
Vậy ...
Giải:
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(TH1:x\ge0\)
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(x-\dfrac{5}{6}.x=\dfrac{5}{6}\)
\(x.\left(1-\dfrac{5}{6}\right)=\dfrac{5}{6}\)
\(x.\dfrac{1}{6}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}:\dfrac{1}{6}\)
\(x=5\)
\(TH2:x\le0\)
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(-x-\dfrac{5}{6}.x=\dfrac{5}{6}\)
\(x.\left(-1-\dfrac{5}{6}\right)=\dfrac{5}{6}\)
\(x.\dfrac{-11}{6}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}:\dfrac{-11}{6}\)
\(x=\dfrac{-5}{11}\)
Vậy \(x\in\left\{\dfrac{-5}{11};5\right\}\)
=>2x/8=6/8=>2x=6=>x=3=>3/4=15/y=>15/20=15/y=>y=20
z/64=6/8=>z/64=48/64=>z=48
l-i-k-e cho mk nha
\(\frac{x}{4}=\frac{15}{y}=\frac{z}{64}=\frac{6}{8}\)
\(\frac{x}{4}=\frac{6}{8}\Rightarrow x=\frac{4\cdot6}{8}=3\)
\(\frac{15}{y}=\frac{6}{8}\Rightarrow y=\frac{15\cdot8}{6}=20\)
\(\frac{z}{64}=\frac{6}{8}\Rightarrow x=\frac{64\cdot6}{8}=48\)
giúp mik mik đang cần gấp
nhưng phả có lời giải đừng cho mỗi đáp án
a:Ta có: \(\left(x-9\right)^7=\left(x-9\right)^4\)
\(\Leftrightarrow\left(x-9\right)^4\cdot\left[\left(x-9\right)^3-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-9=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=10\end{matrix}\right.\)
b: ta có: \(\left(3x-15\right)^{15}=\left(3x-15\right)^{10}\)
\(\Leftrightarrow\left(3x-15\right)^{10}\cdot\left[\left(3x-15\right)^5-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{16}{3}\end{matrix}\right.\)
`6/8 = 15/x`
`3/4 = 15/x`
`x = 15 : 3/4`
`x=15 xx 4/3`
`x=20`
Vậy `x=20`
6/8=15/x
3/4=15/x
15/20=15/x
x=20