Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}\)
=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}=\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{24}=5\)
=> x=5.33=165
y=5.4=20
z=5.5=25
a, \(x=\frac{10^{2015}\cdot7^{2016}}{2^{2015}\cdot35^{2016}}=\frac{2^{2015}\cdot5^{2015}\cdot7^{2016}}{2^{2015}\cdot5^{2016}\cdot7^{2016}}=\frac{1}{5}\)
b, \(x+2\)có ngoặc không vậy?
Nếu có: \(\frac{5^{x+2}}{25}=125\Rightarrow5^{x+2}=125\cdot25=3125=5^5\Rightarrow x+2=5\Rightarrow x=3\)
c, \(\left(\frac{3}{5}\right)^4\cdot\left(\frac{5}{3}\right)^3=\left(\frac{3}{5}\right)^3\cdot\left(\frac{5}{3}\right)^3\cdot\frac{3}{5}=\left(\frac{3}{5}\cdot\frac{5}{3}\right)^3\cdot\frac{3}{5}=1^3\cdot\frac{3}{5}=\frac{3}{5}\)
d, \(2\cdot x+7\)có ngoặc không vậy?
Nếu có: \(19\cdot5^{2\cdot x+7}=475\Rightarrow5^{2\cdot x+7}=\frac{475}{19}=25=5^2\Rightarrow2\cdot x+7=2\Rightarrow2\cdot x=-5\Rightarrow x=-\frac{5}{2}\)
e, Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{-17-1}{9}=\frac{-18}{9}=2\)
\(\Rightarrow x+2=2\cdot7=14\Rightarrow x=12,y-3=2\cdot5=10\Rightarrow y=13,z=2\cdot3=6\)
ta co 6/11.x=20
x=20.11/6
x=110/3
ta co 9/2y=20
y=20.2/9=40/9
ta co 18/5 z=20
z= 20.5/18
z=50/9
\(x=20:\frac{6}{11}=\frac{110}{3}\)
\(y=20:\frac{9}{2}=\frac{40}{9}\)
\(z=20:\frac{18}{5}=\frac{50}{9}\)
ta co\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)\(=\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)=\(\frac{-x+y+z}{\frac{11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{120}{\frac{-4}{3}}=-90\)(ap dung tinh chat day ti so bang nhau)
\(\frac{x}{\frac{11}{6}}=-90->x=-165\)lam tuong tu ta duoc y=-20,z=-25 sau do ban do ban doi dau thi duoc x=165,y=20,z=25
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=\frac{-62}{31}=-2\)
\(\Rightarrow x=\left(-2\right).6=-12\)
\(y=\left(-2\right).15=-30\)
\(z=\left(-2\right).10=-20\)
\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra :
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)
Thay vào đề , ta có : xyz = 640
\(\Rightarrow4k\cdot8k\cdot20k=640\)
\(\Rightarrow640k^3=640\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=4;y=8;z=20\)
Vậy
Ta có : \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{15}{5}z\)=> \(\frac{45y}{10}=\frac{30z}{10}\)=> 45y = 30z => 3y = 2z => \(\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{x}{33}=\frac{y}{4};\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{x}{66}=\frac{y}{4};\frac{y}{4}=\frac{z}{12}\)
=> \(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}\)và y - x + z = -120
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}=\frac{y-x+z}{4-66+12}=\frac{-120}{-50}=\frac{12}{5}\)
=> \(\hept{\begin{cases}\frac{x}{66}=\frac{12}{5}\\\frac{y}{4}=\frac{12}{5}\\\frac{z}{12}=\frac{12}{5}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{792}{5}\\y=\frac{48}{5}\\z=\frac{144}{5}\end{cases}}\)