Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu z
Ta có: \(\dfrac{1}{10001}=\dfrac{1234}{x}=\dfrac{y}{45674567}=\dfrac{2345}{t}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1234.10001=12341234\\y=\dfrac{45674567}{10001}=4567\\t=2345.10001=23452345\end{matrix}\right.\)
Vì 1/10001 = 1234/x => x = 10001.1234 = 12341234
Vì 1/10001 = y/45674567 => y = y.10001 = 45674567 <=>
y = 4567
Vì 1/10001 = 2345/t => t = 10001.2345 = 23452345
Vậy...
Lời giải:
\(P=(\sqrt{x}+1)-\frac{y(\sqrt{x}+1)}{y+1}+(\sqrt{y}+1)-\frac{z(\sqrt{y}+1)}{z+1}+(\sqrt{z}+1)-\frac{x(\sqrt{z}+1)}{x+1}\)
\(=(\sqrt{x}+\sqrt{y}+\sqrt{z}+3)-\left[\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\right]\)
\(=6-\left[\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\right](1)\)
Áp dụng BĐT Cauchy:
\(\frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\leq \frac{y(\sqrt{x}+1)}{2\sqrt{y}}+\frac{z(\sqrt{y}+1)}{2\sqrt{z}}+\frac{x(\sqrt{z}+1)}{2\sqrt{x}}=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}+(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})}{2}\)
Theo hệ quả quen thuộc của BĐT Cauchy: \((\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\leq \frac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)
\(\Rightarrow \frac{y(\sqrt{x}+1)}{y+1}+\frac{z(\sqrt{y}+1)}{z+1}+\frac{x(\sqrt{z}+1)}{x+1}\leq \frac{(\sqrt{x}+\sqrt{y}+\sqrt{z})+\frac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^2}{2}=3(2)\)
Từ \((1);(2)\Rightarrow P\geq 6-3=3\)
Vậy \(P_{\min}=3\Leftrightarrow x=y=z=1\)
Lời giải:
Điều kiện đề bài:
\(\Rightarrow \left\{\begin{matrix} x^2+y^2-x\sqrt{x}-y\sqrt{y}=0\\ x^2\sqrt{x}+y^2\sqrt{y}-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{x}(\sqrt{x}-1)+y\sqrt{y}(\sqrt{y}-1)=0\\ x^2(\sqrt{x}-1)+y^2(\sqrt{y}-1)=0\end{matrix}\right.\)
\(\Rightarrow (x^2-x\sqrt{x})(\sqrt{x}-1)+(y^2-y\sqrt{y})(\sqrt{y}-1)=0\) (lấy vế 2 trừ vế 1)
\(\Leftrightarrow x\sqrt{x}(\sqrt{x}-1)^2+y\sqrt{y}(\sqrt{y}-1)^2=0\)
Vì mỗi số hạng trên đều không âm với mọi $x,y>0$ nên để tổng của chúng bằng $0$ thì:
\(x\sqrt{x}(\sqrt{x}-1)^2=y\sqrt{y}(\sqrt{y}-1)^2=0\)
\(\Rightarrow x=y=1\Rightarrow x+y=2\)
pt<=>\(\left(2x-y\right)^2+\left(y-2\right)^2+\)/x+y+z/=0.
<=> \(\int^{2x-y=0}_{\int^{y-2=0}_{x+y+z=0}}\Leftrightarrow\int^{\int^{y=2}_{x=1}}_{x=-1-2=-3}\)