Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy với a,b >0 thì \(\frac{a}{b}<\frac{a+n}{b+n}\), với a,b<0 thì \(\frac{a}{b}>\frac{a+\left(-n\right)}{b+\left(-n\right)}\) \(\left(n\in Z;\right)n>0\)
Vậy ta sắp xếp như sau:
\(-\frac{8}{9};-\frac{6}{7};-\frac{4}{5};-\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{5}{6};\frac{7}{8};\frac{9}{10}\)
b, Có:
\(\frac{0}{23}=0\)
\(-\frac{14}{5}<-1<\frac{-15}{19}<-\frac{15+\left(-2\right)}{19+\left(-2\right)}=-\frac{13}{17}\)
\(\frac{5}{2}>\frac{4}{2}=2>\frac{11}{7}=\frac{99}{63}>\frac{13}{9}=\frac{91}{63}\)
Vậy ta sắp xếp như sau:
\(-\frac{14}{5};-\frac{15}{19};-\frac{13}{17};0;\frac{13}{9};\frac{11}{7};\frac{5}{2}\)
Đáp án A. Theo quy luật : cứ sau vòng lặp 2 số (vd 7-8) thì số thứ nhất giảm đi 1 đơn vị (vd 7->6) và số thứ 2 tăng lên 1 đơn vị (vd 8->9)
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
Bài 1:
a: \(\Leftrightarrow x\cdot\dfrac{3}{4}=-1\)
hay x=-4/3
b: =>x=4/8+3/7=1/2+3/7=7/14+6/14=13/14
Bài 3:
BCNN(16;32;5)=160
UCLN(16;32;5)=1
Ta có :
\(A=\dfrac{10^8+2}{10^8-1}=\)\(\dfrac{10^8-1+3}{10^8-1}=\dfrac{10^8-1}{10^8-1}+\dfrac{3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=\dfrac{10^8-3}{10^8-3}+\dfrac{3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(1+\dfrac{3}{10^8-1}< 1+\dfrac{3}{10^8-3}\Rightarrow A< B\)
Trước hết ta so sánh 10A và 10B
Ta có:
\(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì: \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B
Ta thấy:B<1 vì 1015+1<1016+1
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A
Cũng đơn giản thôi. 10x9x8x7: (6+5+4)x3x2x1=2016
Thử lại nhé!
\(\frac{ }{6}=\frac{10}{15}\) và \(\frac{1}{3}=\frac{8}{ }\)
Ta gọi: \(\frac{ }{6}=\frac{a}{6}\) và \(\frac{8}{ }=\frac{8}{b}\)
Ta có: \(\frac{a}{6}=\frac{a:2.5}{6:2.5}=\frac{10}{15}\)
\(\Rightarrow a=10:5.2=4\)
\(\frac{4}{6}=\frac{10}{15}\)
Vậy, a = 4
Ta có: \(\frac{1}{3}=\frac{1.8}{3.8}=\frac{8}{b}=\frac{8}{24}\)
\(\Rightarrow b=24\)
\(\frac{1}{3}=\frac{8}{24}\)
Vậy, b = 24
going