Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này lạ quá. Hình vẽ là một tứ giác lõm.
Mình hướng dẫn ngắn gọn lời giải
a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh
b, Có góc QMN = 80 độ
=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)
CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)
Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ
=> Góc PQM = 10 độ
Mà góc PQM = góc PNM => Góc PNM = 10 độ
d, Xét tam giác QPM cân ở P ( PQ = PN)
=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ
e, Xét tam giác PQM có QN là đường trung trực của PM
=> Tam giác PQM cân ỏ Q => QP=PN=QM
Mà QM =MN
=> Tứ giác MNQP có 4 cạnh bằng nhau.
a,Chứng minh tam giác MPE đồng dạng với tam giác KPQ.
+PK là phân giác góc QPO.
=>^MPE = ^KPQ.(α) .
+ Tam giác OMN đều .=>^EMP=120 độ.
+ QK cũng là phân giác ^OQP.
=>^QKP = 180 - (^KQP+^KPQ).
Mà 2^KQP + 2^KPQ =180- 60 =120 độ.
=>^QKP=120 độ. Do đó:^EMP = ^QKP. (ß) .
Từ (α) và (ß), ta có tam giác MPE đồng dạng với tam giác KPQ.
b, Chứng minh tứ giác PQEF nội tiếp được trong đường tròn.
Do hai tam giác MPE và KPQ đồng dạng nên:^MEP=^KQP , hay: ^FEP=^FQP.
Suy ra, tứ giác PQEF nội tiếp được trong đường tròn.
c, Gọi D là trung điểm của đoạn PQ. Chứng minh tam giác DEF là một tam giác đều.
Do hai tam giác MPE và KPQ đồng dạng nên: PM/PK =PE/PQ . Suy ra: PM/PE =PK/PQ .
Ngoài ra: ^MPK=^EPQ . Do đó, hai tam giác MPK và EPQ đồng dạng.
Từ đó:^PEQ=^PMK=90độ .
Suy ra, D là tâm của đường tròn ngoại tiếp tứ giác PQEF.
Vì vậy, tam giác DEF cân tại D.
Ta có: ^FDP=2^FQD=^OQP ; ^EDQ=2^EPD=^OPQ .
^FDE=180 - (^FDP+^EDQ) =^POQ =60độ.
Từ đó, tam giác DEF là tam giác đều.
a, góc FAD + góc DAE = 90
góc BAE + góc DAE = 90
=> góc FAD = góc BAE
xét tam giác ADF và tam giác ABE có : góc ADF = góc ABE = 90
AD = AB do ABCD là hình vuông (gt)
=> tam giác ADF = tam giác ABE (cgv-gnk)
=> AF = AE (đn)
=> tam giác AFE cân tại A (đn)
góc AFE = 90 (gT)
=> tam giác AFE vuông cân (dh)
b, tam giác AFE cân tại A (câu a)
AI Là trung tuyến của tam giác AFE (gt)
=> AI _|_ FE (đl) (1)
EG // AB (gt)
AB // DC do ABCD là hình vuông (gT)
=> EG // FK (2)
=> góc GEI = góc IFK (slt)
xét tam giác GIE và tam giác KIF có : góc GIE = góc KIF (đối đỉnh)
FI = IE do I là trđ của FE (gt)
=> tam giác GIE = tam giác KIF (g-c-g)
=> GE = FK (3)
(2)(3) => GEFK là hình bình hành và (1)
=> GEFK là hình thoi (dh)
Xét \(\Delta PQR\)và \(\Delta SPR\)có
\(\hept{\begin{cases}\widehat{PQR}=\widehat{SPR}=59\\\widehat{PRQ}=\widehat{SRP}=61\\\widehat{RPQ}=\widehat{RSP}=60\end{cases}}\)
\(\Rightarrow\Delta PQR\)đồng dạng \(\Delta SPR\)
\(\frac{PQ}{SP}=\frac{PR}{SR}=\frac{QR}{PR}\)
Trong \(\Delta PQR\)và \(\Delta SPR\)cạnh PR trong \(\Delta SPR\)ứng với góc 60 còn trong tam giác còn lại ứng với góc 59 nên
\(\Delta PQR>\Delta SPR\)
=> cạnh lớn nhất trong \(\Delta PQR\)sẽ là đoạn thẳng dài nhất
Hay đoạn thẳng dài nhất là PQ (ứng với góc 61)
đoạn thẳng pr pải ko bn