Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(5x\left(x-3\right)+7\left(x-3\right)=0\)
\(\Rightarrow\left(5x+7\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+7=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-7\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{7}{5}\\x=3\end{cases}}}\)
Vậy ...
b )
\(x^{2017}=x^{2018}\)
\(\Rightarrow x^{2017}-x^{2018}=0\)
\(\Rightarrow x^{2017}\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{2017}=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy ...
c )
\(2x^2=x\)
\(\Rightarrow2x^2:x=1\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy ...
e )
\(x^5=x^4\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)( làm tương tự như phần b )
~
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
\(5x\left(x-2018\right)-x+2018=0\)
\(5x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\5x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{5}\end{cases}}\)
Vậy.........
a) x( x + 2018 ) - 2x - 4036 = 0
<=> x( x + 2018 ) - 2( x + 2018 ) = 0
<=> ( x + 2018 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+2018=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2018\\x=2\end{cases}}\)
b) x + 5 = 2( x + 5 )2
<=> x + 5 = 2( x2 + 10x + 25 )
<=> x + 5 = 2x2 + 20x + 50
<=> 2x2 + 20x + 50 - x - 5 = 0
<=> 2x2 + 19x + 45 = 0
<=> 2x2 + 10x + 9x + 45 = 0
<=> 2x( x + 5 ) + 9( x + 5 ) = 0
<=> ( x + 5 )( 2x + 9 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{9}{2}\end{cases}}\)
c) ( x2 + 1 )( 2x - 1 ) + 2x = 1
<=> 2x3 - x2 + 4x - 1 - 1 = 0
<=> 2x3 - x2 + 4x - 2 = 0
<=> x2( 2x - 1 ) + 2( 2x - 1 ) = 0
<=> ( 2x - 1 )( x2 + 2 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+2=0\end{cases}\Leftrightarrow}x=\frac{1}{2}\)( vì x2 + 2 ≥ 2 > 0 ∀ x )
d) \(\frac{x}{3}-\frac{x^2}{4}=0\)
\(\Leftrightarrow\frac{4x}{12}-\frac{3x^2}{12}=0\)
\(\Leftrightarrow\frac{4x-3x^2}{12}=0\)
\(\Leftrightarrow4x-3x^2=0\)
\(\Leftrightarrow x\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
Đặt x+2017=a; x-2018=b
Theo đề, tacó: \(a^3+b^3-\left(a+b\right)^3=0\)
=>3ab(a+b)=0
=>(x+2017)(x-2018)(2x-1)=0
hay \(x\in\left\{-2017;2018;\dfrac{1}{2}\right\}\)
mk ko vt lại đề
=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
...... phần này bn tự làm đc
=>x=1,y=-1
thay vào là dc
Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)
=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\) , \(\left(x-1\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)
Thay vào M ta có:
\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)
\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\)\(x=-y=z=1\)
\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)
...
Câu a :
\(5x\left(x-2018\right)-x+2018=0\)
\(5x\left(x-2018\right)-x+2018=0\)
\(\Leftrightarrow5x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Leftrightarrow\left(x-2018\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2018=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=2018\)
Câu b :
\(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(x=-\sqrt{2}\) ; \(x=0\) hoặc \(x=\sqrt{2}\)
Wish you study well !!