Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
Câu 1: Đề bài sai, với điều kiện đề bài đã cho thì Q vẫn nguyên tại \(x=0\), đề bài đúng phải là \(\forall x>0\) thì Q không nguyên (ko hiểu sao lại có điều kiện \(x\ne4\) , cái này hoàn toàn ko ảnh hưởng gì tới bài toán)
\(A=Q^2=\frac{x+4\sqrt{x}+4}{x+4}\Leftrightarrow Ax+4A=x+4\sqrt{x}+4\)
\(\Leftrightarrow\left(A-1\right)x-4\sqrt{x}+4A-4=0\)
\(\Delta'=4-\left(4A-4\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow=-A^2+2A\ge0\Rightarrow0\le A\le2\Rightarrow A\le2\)
\(\Rightarrow Q\le\sqrt{2}< 2\)
Mặt khác ta có \(\sqrt{x}+2=\sqrt{x}+\sqrt{4}>\sqrt{x+4}\)
\(\Rightarrow Q=\frac{\sqrt{x}+2}{\sqrt{x+4}}>1\) \(\Rightarrow1< Q< 2\Rightarrow Q\) không thể nhận giá trị nguyên
Câu 2: ĐKXĐ: \(x\ge-2\)
a/ \(\Leftrightarrow4\left(x^2+2x+3\right)+3\left(x+2\right)=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\) ta được:
\(3a^2-8ab+4b^2=0\Leftrightarrow\left(a-2b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\3a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2+2x+3}\\3\sqrt{x+2}=2\sqrt{x^2+2x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2+7x+10=0\left(vn\right)\\4x^2-x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1\pm\sqrt{97}}{8}\)
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge7\\-5\le x\le-2\end{matrix}\right.\)
\(\Leftrightarrow3x^2-11x-22=7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}\)
\(\Leftrightarrow3\left(x^2-5x-14\right)+4\left(x+5\right)-7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-5x-14}=a\ge0\\\sqrt{x+5}=b\ge0\end{matrix}\right.\) ta được:
\(3a^2-7ab+4b^2=0\Leftrightarrow\left(a-b\right)\left(3a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-5x-14}=\sqrt{x+5}\\3\sqrt{x^2-5x-14}=4\sqrt{x+5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-19=0\\9x^2-61x-206=0\end{matrix}\right.\) \(\Rightarrow x=...\)