![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> 25x^2-20xy+5y^2-30y+40 = 0 ( nhân 2 vế với 5 )
<=> (25x^2-20xy+4y^2)+(y^2-30y+225) = 185
<=>(5x-2y)^2+(y-15)^2 = 185 = 8^2 + 11^2
Đến đó bạn tự giải nha
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5x^2+2y^2-4xy-2x-4y+5=0\\ \Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(2x-y\right)^2+\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(2x-y\right)^2\ge0\forall x,y\in R \\ \left(x-1\right)^2\ge0\forall x\in R\\ \left(y-2\right)^2\ge0\forall y\in R\)
Nên dấu "=" xảy ra khi và chỉ khi \(\left(2x-y\right)^2=0\\ \left(x-1\right)^2=0\\ \left(y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\2.1-2=0\left(thoảmãn\right)\end{matrix}\right.\)
Vậy cặp số (x;y) cần tìm là (1:2)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)
b,\(4x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
c,\(5x^2+9y^2-12xy+4x+4=0\)
\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)
\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)
d,\(5x^2+9y^2-6xy-4x+1=0\)
\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5x^2-4xy+y^2-6x+8=0\)
\(\Leftrightarrow25x^2-20xy+5y^2-30x+40=0\)
\(\Leftrightarrow\left(5x-2y\right)^2+\left(y-15\right)^2=185=64+121=8^2+11^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}5x-2y=8\\y-15=11\end{matrix}\right.\\\left[{}\begin{matrix}5x-2y=11\\y-15=8\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}5x=2y+8\\y=26\end{matrix}\right.\\\left[{}\begin{matrix}5x=11+2y\\y=23\end{matrix}\right.\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=26\end{matrix}\right.\left(thoaman\right)}\\\left\{{}\begin{matrix}x=11,4\\y=23\end{matrix}\right.\left(kothoaman\right)\end{matrix}\right.\)
Vậy S={26,12}
![](https://rs.olm.vn/images/avt/0.png?1311)
x2 + 5y2 - 4xy + 6x - 14y + 10 = 0
=> (x2 - 4xy + 4y2) + (6x - 12y) + 9 + (y2 - 2y + 1) = 0
=> (x - 2y)2 + 6(x - 2y) + 9 + (y - 1)2 = 0
=> (x - 2y + 3)2 + (y - 1)2 = 0
=> \(\hept{\begin{cases}x-2y+3=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x = 1 ; y = - 1 là giá trị cần tìm
⇔ \(5x^2\)- \(y^2\) +4xy=9
⇔ 4\(x^2\)+4xy+\(x^2\)-\(y^2\)=9
⇔4x(x+y)+(x+y)(x-y)=9
⇔ (x+y)(4x+x-y)=9=1.9=9.1=3.3=(-3).(-3)=(-9).(-1)=(-1).(-9)
lập bảng đồ các kiểu=> x,y