Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
1 2y(4X bình -9)
2 5(X bình +10+1-Y bình)
3 3X(X bình +2X+1-4Y bình)
4 ab(a bình-b bình) + (a+b)bình
5 2X bình (X-4) - 2Xy(Y-4)
xong
\(8x^2-18y=2y\left(4x^2-9\right)\)
5)\(2x^3-2xy^2-8x^2+8xy\)=\(2x\left(x^2-Y^2\right)-8X\left(x+y\right)\)=\(2x\left(x+y\right)\left(x-y\right)-8x\left(x+y\right)\)=
x2 + 5y2 - 4xy + 6x - 14y + 10 = 0
=> (x2 - 4xy + 4y2) + (6x - 12y) + 9 + (y2 - 2y + 1) = 0
=> (x - 2y)2 + 6(x - 2y) + 9 + (y - 1)2 = 0
=> (x - 2y + 3)2 + (y - 1)2 = 0
=> \(\hept{\begin{cases}x-2y+3=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x = 1 ; y = - 1 là giá trị cần tìm
=(xy(8x+4+5y))/2xy -3x^2
=(8x+4+5y)/2 +3x^2
=(8x+4+5y)/2 + 6x^2 /2
=(8x+4+5y-6x^2)/2
Answer:
\(B=-5x^2-5y^2+8x-6y-1\)
\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)
\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)
Có:
\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)
Do vậy:
\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)
Vậy "=" xảy ra khi:
\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)
\(C=-5x^2-2xy-2y^2+14x+10y-1\)
\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)
\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)
\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)
Có:
\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)
Do vậy:
\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
A = 5x2 + 5y2 + 2xy + 8x + 16y + 5
A = ( x2 + 2xy + y2 ) + ( 4x2 + 8x + 4 ) + ( 4y2 + 16y + 16 ) - 15
A = ( x + y )2 + ( 2x + 2 )2 + ( 2y + 4 )2 - 15 \(\le\)- 15
Dấu = xảy ra \(\Leftrightarrow\)2x + 2 = 0 ; 2y + 4 = 0
\(\Rightarrow\)x = - 1 và y = - 2
Max A = - 15 \(\Leftrightarrow\)x = - 1 và y = - 2