Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)\(\Rightarrow\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\)
\(\Rightarrow\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)
tuongtu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\)
cộng 2 vế trên ta có \(-\left(x+y\right)=x+y\Rightarrow x+y=0\)
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=3\sqrt{3}\)
vậy \(A=3\sqrt{3}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) \(ĐKXĐ:x>0;x\ne1\)
\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)
\(B=1-x\)
vậy \(B=1-x\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)
\(C=4+5+6\)
\(C=15\)
vậy \(C=15\)
Cho mk giải câu a:
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=\left(18-10-5\right)\sqrt{3}\)
\(A=3\sqrt{3}\)
\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)
\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)
\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)
\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)
cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^
a) Để M xác định thì \(\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) \(M=\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
sao cía này giống toán lớp 6 vậy bn
Cái này đề sai nha bn , mk ko tính ra