Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x - 13 = 612
5x = 612 + 13
5x = 625
x = 625 : 5
x = 125
Vậy x = 125
5x-1-13=612
5x-1=612+13
5x-1=625
5x=625+1
5x=626
x=626:5
x=125,2
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Từ n+4 chia hết cho n+1
Ta có : n+4=(n+1) + 3
Thì ta có n + 1 +3 sẽ chia hết cho n+1
Suy ra 3 chia hết cho n+1
n+1 sẽ thuộc ước của 3
Ư(3) = ((1;3))
Suy ra n+1=1 hoặc n+1=3
+) n+1=1
n = 1-1
n = 0
+) n+1= 3
n = 3-1
n = 2
Suy ra n có thể bằng 0 hoặc 2
k cho mình nha
Vì 3 + 1 + 2 = 6 chia hết cho 3 nên 312 3; nghĩa là 312 có ước là 3, khác 1 và 312. Vậy 312 là một hợp số.
Tương tự 213 cũng là một hợp số. 435 là một hợp số vì 435 5.
Vì 3311 = 11 . 301 nên 3311 có ước là 11 và 301. Vậy 3311 là một hợp số.
67 là một số nguyên tố vì nó chỉ có hai ước là 1 và 67.
Số nguyên tố : 67
Hợp số : 312 ; 213 ; 435 ; 417 ; 3311
(x+1)-12=13
x+1 = 13+12
x+1 = 25
x =25-1
x = 24
mk giải hộ bạn rùi đấy
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
\(5^{x-1}-13=612\)
\(\Leftrightarrow5^{x-1}=625\)
\(\Leftrightarrow5^{x-1}=5^4\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=5\)