Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)
\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)
\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)
\(=2\sqrt{3}\)
\(=\left(\sqrt{5}+\sqrt{5}-\frac{5}{4}.\frac{\sqrt{20+25\sqrt{5}}}{5}\right):2\sqrt{5}\\\)
\(=\left(2\sqrt{5}-\frac{\sqrt{20+25\sqrt{5}}}{4}\right):2\sqrt{5}\)\(=1-\frac{\sqrt{20+25\sqrt{5}}}{4.2\sqrt{5}}=1-\frac{\sqrt{4+5\sqrt{5}}}{8}\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
ĐỂ phép tính k bị lẻ lên thay \(\frac{5}{4}.\sqrt{\frac{4}{5}}=\frac{5}{2}.\sqrt{\frac{4}{5}}\)
\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}.\sqrt{20}-\frac{5}{2}.\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\sqrt{5}-\sqrt{5}+\sqrt{5}\right):2\sqrt{5}=2\sqrt{5}:2\sqrt{5}=1\)