Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
35n+2+35n+1-35n
=35n.32+35n.31-35n
=35n.9+35n.3-35n
=35n.(9+3-1)
=35n.11 chia hết cho 11
=> 35n+2+35n+1-35n chia hết cho 11
Gọi d là \(ƯCLN\left(5n+2,5n+3\right)\)
\(\Rightarrow\begin{cases}5n+2⋮d\\5n+3⋮d\end{cases}\)
\(\Rightarrow\left(5n+3\right)-\left(5n+2\right)⋮d\)
\(\Rightarrow5n+3-5n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(5n+2,5n+3\right)=1\)
Vậy 5n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .
b, Gọi d là \(ƯCLN\left(7n+1,6n+1\right)\)
\(\Rightarrow\begin{cases}7n+1⋮d\\6n+1⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}42n+6⋮d\\42n+7⋮d\end{cases}\)
\(\Rightarrow\left(42n+7\right)-\left(42n+6\right)⋮d\)
\(\Rightarrow42n+7-42n-6⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(7n+1,6n+1\right)=1\)
Vậy 7n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .
c, Gọi d là \(ƯCLN\left(5n+1,4n+1\right)\)
\(\Rightarrow\begin{cases}5n+1⋮d\\4n+1⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}20n+4⋮d\\20n+5⋮d\end{cases}\)
\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)
\(\Rightarrow20n+5-20n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(5n+1,4n+1\right)=1\)
Vậy 5n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
CM: \(\dfrac{1}{1.6}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)
A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\))
A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\). \(\dfrac{5n+6-1}{5n+6}\)
A = \(\dfrac{1}{5}\). \(\dfrac{5n+5}{5n+6}\)
A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)
A = \(\dfrac{n+1}{5n+6}\)
⇒\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)
\(\Rightarrow dpcm\)
Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6)
5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)
=1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6
=1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
Lời giải:
$A=\frac{1}{1.6}+\frac{1}{6.11}+....+\frac{1}{(5n+1)(5n+6)}$
$5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+....+\frac{(5n+6)-(5n+1)}{(5n+1)(5n+6)}$
$5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5n+1}-\frac{1}{5n+6}$
$=1-\frac{1}{5n+6}=\frac{5n+5}{5n+6}$
$\Rightarrow A=\frac{n+1}{5n+6}$
Dãy số viết theo quy luật mà bạn, nhiều bài thế này rồi, bạn muốn cụ thể thì vào Google mà tìm ...
3n-1+5.3n-1=162
3n-1.(5+1)=162
3n-1.6=162
3n-1=162:6
3n-1=27=33
=>n-1=3
=>n=3+1
=>n=4
5n+5n+2=650
5n+5n.52=650
5n.(52+1)=650
5n.26=650
5n=650:26
5n=25=52
=>n=2